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SUMMARY
We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has over-
come many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to
thousands to millions of cells from both gram-negative and gram-positive species. It features universal
ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel
sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their het-
erogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we
found within-population heterogeneity largely driven by the expression of mobile genetic elements that
promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcription-
ally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence.
BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new
microbiological insights into bacterial responses to perturbations and larger bacterial communities such
as the microbiome.
INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has led to important

discoveries in mammalian systems, resulting in great apprecia-

tion of the transcriptional heterogeneity of cell types and cell

states.1–8 Although heterogeneity is essential for bacterial

communities, bacterial scRNA-seq is underdeveloped due to

longstanding technical challenges, including bacterial lysis, the

absence of polyadenylated tails on messenger RNA (mRNA),

and the paucity of mRNA molecules in a single bacterial cell,9

which collectively lead to degraded transcriptome coverage

and quality relative to mammalian systems.

Recently, several bacterial scRNA-seq approaches have been

described, including plate-based methods such as microSPLiT,

PETRI-seq, and MATQ-seq,10–13 and probe-based methods

such as par-seqFISH.14,15 These plate-based scRNA-seq tech-

nologies enable genome-wide scRNA-seq, but they have to

date been limited by the numbers of cells (scale) that can be

studied. Additionally, sequencing reads of these plate-based

methods are dominated (>90%) by the overwhelmingly abun-
dant rRNA, wasting a large portion of the sequencing invest-

ment. In contrast, the probe-based methods avoid the problem

of rRNA and have improved scale. However, they require prior

knowledge of the genome(s) of interest to enable probe design

and generation, limiting the numbers of genes that can be

queried. Due to these limitations, studies using these previously

reported methods have mainly focused on between-population

heterogeneity, with a focus on proof of principle, whereas

within-population heterogeneity, which requires the character-

ization of large number of cells from a single population at

genome level, has not been extensively described.

One of the fundamental lessons from eukaryotic scRNA-seq is

that because of the co-variation structure of gene expression

within and between cells, profiling larger number of cells shal-

lowly is a more favorable experimental design than profiling a

small number of cells deeply and can better recover the statisti-

cal properties of cell populations and gene programs.16 This is

especially the case when molecular techniques limit the profile

of each cell to a relatively low fraction of transcripts, randomly

sampled from all transcripts in the cell. Combined with powerful
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algorithms, numerous scRNA-seq studies in eukaryotic systems

have demonstrated that novel cell types, states, dynamic trajec-

tories, gene programs, and even features like spatial locations

and cell interactions can be comprehensively recovered by

such massively parallel methods, whereas per-cell coverage

plays a less important role.1–4,6,16–26 Experimental and computa-

tional analyses have also demonstrated that low coverage and/

or low sequencing depth is sufficient for effective cell clustering,

detection of rare populations, identification of biomarkers when

analyzing a large number of cells, and conducting genetic ‘‘Per-

turb-seq’’ screens.25–29 The underlying principle of this observa-

tion is that scRNA-seq remains a sampling strategy, with only a

portion of cells sampled from a population (scale) and a portion

of RNA molecules sampled from a cell (coverage).16 Although

higher coverage enables deep profiling of some cells and genes,

it lacks the statistical power to recapitulate the phenotypic land-

scape of the population when the scale is limited. In contrast,

because gene expression is structured due to shared regulatory

mechanism, when a large number of cells are analyzed, even

lower coverage of each cell allows the recovery of shared

patterns such as clustering of similar cells to identify distinct sub-

populations or ordering cells by pseudotime to recover temporal

trajectories.16,26,30 Thus, to capture the phenotypic landscape of

the population and its statistical properties and distributions,

rather than what is happening to one particular gene in any

one particular cell, scale is more critical.

This same biological and statistical principle is more important

in single-cell transcriptional analysis of bacteria due to the

inherent paucity of mRNA molecules in a single bacterial cell.9

Additionally, if applied to samples with high complexity or diver-

sity, large numbers of cells are critical to ensure the capture of

enough cells from any individual rare subpopulation or species,

such as persister or heteroresistant subpopulations9,31–33 or

the microbiome, mirroring the requirements in large-scale

mammalian projects such as the Human Cell Atlas.34 Therefore,

methods for increasing bacterial scRNA-seq scale will be essen-

tial for studies in microbial systems.

Here, we report the development and application of BacDrop,

a droplet-based genome-wide massively parallel bacterial

scRNA-seq technology. BacDrop has the flexibility to investigate

a wide range of numbers of cells in one experiment, from

thousands to millions of single bacterial cells, without requiring

prior knowledge of the genome or probe design. BacDrop also

includes a universal and efficient rRNA-depletion step, reducing

sequencing costs by at least 10-fold while simultaneously

increasing information content. Furthermore, we demonstrated

that BacDrop works on a variety of bacterial species, including

gram-negative Escherichia coli, Klebsiella pneumoniae, Pseudo-

monas aeruginosa, and gram-positive bacterium Enterococcus

faecium.

In this study, we applied BacDrop to assess any within-popu-

lation heterogeneity of K. pneumoniae and characterize its

responses to antibiotics. K. pneumoniae is one of the leading

threats in the antibiotic resistance crisis, especially resistance

to carbapenems, the last-resort antibiotic used to treat the

most resistant infections.35 Under stable and dynamic

conditions (i.e., without and with antibiotic perturbations), we

identified important features of heterogeneity that have been
2 Cell 186, 1–15, February 16, 2023
masked by bulk analysis. In the absence of antibiotic perturba-

tion, we found within-population heterogeneity driven predomi-

nantly by mobile genetic elements (MGEs), which promote the

evolution of antibiotic resistance, thus demonstrating novel

subpopulation structure and function in a previously presumed

homogeneous population. After antibiotic perturbation,

BacDrop revealed transcriptionally distinct subpopulations that

are associated with different phenotypic outcomes including

decreased antibiotic efficacy and persister formation. With this

demonstration of the power of BacDrop to illuminate heteroge-

neity both in static bacterial populations and their dynamic

responses to perturbations, we propose that BacDrop has the

potential to transform our understanding of bacterial survival,

adaptation, and evolution, with numerous potential applications

including the characterization of complex communities.

RESULTS

BacDrop: A bacterial droplet-based massively parallel
scRNA-seq technology
We developed BacDrop based on droplet-based microfluidics

technology, which has the advantage of achieving much higher

scale than plate-based technologies, leveraging the 10x Geno-

mics platform, a reliable and commercially available platform

for scRNA-seq.24 Two of the unique features of bacteria

compared with mammalian cells are the challenge of lysing the

bacterial cell wall, which requires harsher lysis conditions while

preserving RNA integrity, and the absence of mRNA polyadeny-

lated tails, thus requiring an alternative approach to isolate

mRNA (�5%) from the vastly more abundant rRNA (�95%). To

overcome these problems, we adapted a previously reported

cell fixation and permeabilization protocol to avoid cell lysis prior

to droplet encapsulation10,12 and implemented universal rRNA

and genomic DNA (gDNA) depletion steps within the permeabi-

lized, fixed cells using RNase H and DNase I, respectively

(Figures 1A and S1A).

Droplet-based single-cell approaches require Poisson loading

at mean droplet occupancy values (l) far less than 1 to ensure

that multiple cells are not encapsulated within a single droplet1

and thus do not share the same barcode, limiting numbers of

cells that can be loaded in each microfluidic channel. We

overcame this problem by utilizing a multistep barcoding strat-

egy, wherein cells are uniquely identified using the combination

of two barcodes (Figure 1): a ‘‘plate barcode’’ (CB1) as a pre-in-

dexing step corresponding to one of a possible 384 different

barcodes achieved via reverse transcription (RT) and a second

‘‘droplet barcode’’ (CB2) that uniquely identifies each droplet

by utilizing the commercially available single-cell kit from 10x

Genomics (see method details) and loaded 3–6 cells per droplet.

Together, CB1 and CB2 constitute the cell barcode. This pre-in-

dexing strategy has recently been successfully applied to

mammalian droplet-based scRNA-seq.36 By pre-indexing, we

were able to load each droplet with multiple cells, increasing

the scale significantly from a l of �0.3 for conventional droplet

scRNA-seq experiments to a l of >1 for our approach with mul-

tiple cells in each drop. Additionally, template switching is less

efficient for second strand cDNA synthesis from bacterial than

mammalian mRNA due to the lack of proper modifications at
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Figure 1. BacDrop: a bacterial droplet-based massively parallel scRNA-seq technology

(A) BacDrop workflow. Following cell fixation and permeabilization, rRNA and gDNA is depleted from cells in bulk. Then, CB1 and unique molecular identifiers

(UMIs) are added to the 50 end of cDNA via RT reactions (round 1 plate barcoding) in 96- or 384-well plates. After round 1 plate barcoding, all cells are pooled, and

cDNA is polyadenylated at the 30 end using terminal transferase, followed by droplet generation and round 2 droplet barcoding. The 30 poly(A) tail of cDNA enables

second strand synthesis using oligo-dT primers. Round 2 droplet barcoding is achieved via second strand cDNA synthesis and 4 capturing cycles by barcoded

primers (on 10x gel beads) in droplets. The successfully captured cDNA contains UMIs, CB1 and CB2, as well as adaptor sequences at both 50 and 30 end. Each
cell is identified by a combination of CB1 and CB2.

(B) Scheme of two rounds of cell barcoding and library construction. The RT primer is composed of a partial primer binding sequence (PBS) for Illumina

sequencing, UMI (8 bp), CB1 (13 bp), and 6-bp random sequence for RT priming. The 30 of cDNA was polyadenylated in cells after RT. A specific number of cells

(thousands to millions) were then encapsulated, followed by 2nd strand cDNA synthesis and round 2 barcoding in droplets to attach CB2 to the double-stranded

cDNA. An adapter (SMRT) sequence was added to the polyA end of the cDNA to enable cDNA amplification. After cDNA purification and amplification,

tagmentation and PCR enrichment was performed to generate Illumina sequencing libraries.
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the 50 end of bacterial mRNA.37,38 We thus used terminal trans-

ferase (TdT) to append poly(A) tails to the 30 end of cDNA to facil-

itate second strand cDNA synthesis inside droplets.

Determining the technical performance of BacDrop
To characterize the performance of BacDrop, we tested the

efficiency of rRNA depletion, the effect of fixation on gene

expression profiles, and the congruence of transcriptional

profiles with bulk RNA-seq libraries, barcode collision rates,

and generalizability to different bacterial species. After rRNA

depletion, the fraction of mRNA reads increased from �5% to

50%–90% of the total aligned reads, while preserving mRNA

profiles relative to non-depleted samples (R2 = 0.81;

Figures 2A, 2B, and S1B). In addition, we confirmed that

mRNA profiles were not affected by cell fixation in bulk experi-

ments (R2 = 0.97; Figure 2C) and that BacDrop produces tran-

scriptional profiles that are well correlated with those generated

by the traditional bulk RNA-seq method (R2 = 0.91; Figure 2D).

We confirmed that the two-step barcoding strategy, which

was used to enable loading of multiple cells per droplet, resulted

in minimal cell barcode collision rates. We conducted round 1

plate barcoding using 384 RT primers and round 2 droplet bar-

coding containing on average 6 cells per droplet, although with

a range of cell numbers per droplet, on a mixed population of

two distinguishable species, K. pneumoniae and P. aeruginosa.

Of 44,140 cells that passed quality control at a sequencing depth
of�1,000 reads per cell, 42,893 cells (97.2%) had >99%of UMIs

aligning to a single species, whereas the other 1,247 cells (2.8%)

had >1%of UMIs aligning to both species (Figure 2E). The result-

ing barcode collision rate of 6.6% compares with published

methods for eukaryotic droplet scRNA-seq that ranges from

0.36% to 11.3%, depending on the numbers of cells loaded in

droplets.1,36 We performed all subsequent experiments with <3

cells per droplet, which would yield a library containing

maximally a million cells in each 10x channel with an even lower

collision rate.

To demonstrate the generalizability of BacDrop to different

bacterial species and the ability of BacDrop to differentiate

among multiple species, we applied BacDrop to the gram-nega-

tive E. coli, K. pneumoniae, P. aeruginosa,39 and the gram-pos-

itive E. faecium40 (Figure 2F; Table S2). Each strain was

separately labeled with a unique set of CB1 (Table S1), allowing

us to track and validate the accuracy of species identification in

downstream analyses. CB1-barcoded cells were then pooled for

round 2 droplet barcoding and library construction. All four spe-

cies were distinguished in the analysis using Seurat and the

RNase H-based rRNA depletion worked efficiently across all

four species (Figures 2F, S1C, and S1D). Cells from E. faecium

fell into several subpopulations distinguished by differential

expression of two highly expressed housekeeping genes (ef-tu

and ef-g; log2 fold change �0.6). We noted that P. aeruginosa

cell numbers were underrepresented among the four species
Cell 186, 1–15, February 16, 2023 3
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Figure 2. Validation and technical performance of BacDrop

(A) rRNA depletion inside fixed and permeabilized cells significantly increases the percentage of total reads that align to mRNA in BacDrop libraries of

K. pneumoniae. The average percentage of reads aligned to mRNA genes was calculated from 10 independent BacDrop libraries of K. pneumoniae (5 without

rRNA depletion and 5 with rRNA depletion), and error bars were plotted as the standard deviation.

(B) rRNA depletion does not affect transcriptional profiles. BacDrop libraries were constructed using in K. pneumoniae samples with or without rRNA depletion,

and a linear regression model was fitted to the mRNA counts from each library (R2 = 0.81).

(C) Cell fixation and permeabilization does not affect transcriptional profiles. Bulk RNA-seq results derived from Trizol-extracted RNA samples of K. pneumoniae

versus RNA derived from fixed and permeabilized K. pneumoniae cells were highly correlated (R2 = 0.97).

(D) Single-cell BacDrop results are highly correlated with bulk RNA-seq results (R2 = 0.91) when analyzed in bulk mode (without cell barcode extraction).

(E) BacDrop has low barcode collision rates in an experiment where 2 million bacterial cells, mixed with K. pneumoniae and P. aeruginosa cells, were loaded into

one 10x channel (�6 cells per droplet). About 2.8% of the cells were assigned to two species, resulting in a 6.6% barcode collision rate.

(F) BacDrop was performed on 4 different bacterial species including E. coli,K. pneumoniae, P. aeruginosa, and E. faecium. At the sequencing depth of 500 reads

per cell, approximately 5,000 cells of E. faecium, 2,500 cells of E. coli, 1,000 cells of K. pneumoniae, and 300 cells of P. aeruginosa passed the analysis threshold

(see STAR Methods). Uniform manifold approximation and projection (UMAP) of this mixed population shows the separation of different species, colored by

species identity.

(G and H) Testing the sensitivity of BacDrop using three GFP strains of E. coli. The expression levels of gfp in these three E. coli strains were confirmed via flow

cytometry (G). The mean numbers of gfp transcripts per cell were estimated via RT-qPCR (H). Three biological replicates were performed, and error bars were

plotted as standard deviation. The two-tailed Student’s t test was used for statistical analysis.

(I) Roughly 3,300 cells from each gfp strain were mixed to create a heterogeneous population and a BacDrop library was generated. The gfp expression levels

were calculated using log2-transformed value of transcript per 10,000 reads (log2 (TP10K+1)) per cell from the BacDrop results. Compared with the RT-qPCR

results (H), BacDrop showed a good sensitivity for the gfp.high strain. The difference between gfp.mid and gfp.low is less distinct but statistically significant

(p < 0.005). The Wilcoxon signed-ranks test was used for the statistical analysis.

See also Figure S1.
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in the sequenced library and determined that their loss before

round 2 droplet barcoding could be accounted for by inefficient

recovery following centrifugation due to their small size

(Figures S1E and S1F). This technical consideration was cor-

rected in subsequent experiments by optimizing centrifugation

speeds for each species/sample and by only pooling samples

just prior to round 2 droplet barcoding to ensure equal number

of cells from each sample are loaded into the 10x channel.

We next examined the transcriptome coverage of BacDrop in

E. coli and K. pneumoniae by generating two small libraries con-

taining either �10,000 cells of E. coli or �12,000 cells of

K. pneumoniae (Figures S1G and S1H). Both libraries were

sequenced with �80,000 reads per cell, and we recovered

roughly 4,000 or 6,000 cells (40%–50% cell recovery rates),

containing at least 15mRNA genes per cell, respectively. We de-

tected the expression of �70% genes of the E. coli genome and

�80% genes of the K. pneumoniae genome when we analyzed

all cells together (Tables S3 and S4). At the single-cell level, we

detected an average of 90 and 88 mRNA genes per cell (only

including cells in which at least 15 mRNA genes detected),

respectively, which is comparable with other reported bacterial

scRNA-seq methods.10,12,13 We also generated a large library

from �1 million K. pneumoniae cells and sequenced with

�5,000 reads per cell. We recovered �60,000 cells with at least

15 mRNA genes per cell and detected the expression of 96%

genes of the entire genome when we analyzed all cells together

(Table S5). At the single-cell level, we detected an average of 30

mRNA genes per cell across all 60,000 cells with at least 15

mRNA genes detected. However, from this large library, the

top 3,000 high-quality cells had an average of 127 mRNA genes

detected per cell (Figure S1I). Since this large library was only

sequenced with �5,000 reads per cell, we expect to detect a

higher number of mRNA genes per cell with increased

sequencing depth, as illustrated with the smaller libraries.

Finally, we assessed BacDrop’s sensitivity to distinguish

different expression levels of a gene. We created a heteroge-

neous population containing three E. coli strains constitutively

expressing gfp at different levels (Table S2). We used flow

cytometry to confirm the differing expression levels of gfp in

these strains and estimated the mRNA copy numbers of gfp in

each of these strains using RT-qPCR9 (Figures 2G and 2H).

The estimated mRNA copy numbers per cell were 1–5 for the

gfp.low strain, 9–30 for the gfp.mid strain, and 30–70 for the

gfp.high strain. We then quantified gfp expression in single cells

from the BacDrop results (Figure 2I) and found that gfp expres-

sion levels estimated from BacDrop are statistically different

among three strains (p < 0.005), which is consistent with the

RT-qPCR results. Notably, BacDrop did not detect the expres-

sion of gfp in certain fractions of cells from all three GFP strains,

which is likely a true biological phenomenon given that the bimo-

dality in GFP protein levels previously described in E. coli41 was

also observed here with flow cytometry (Figure 2G).

Validating BacDrop’s ability to identify subpopulations
of a single bacterial isolate
Since our initial results showed that BacDrop is a robust and reli-

able technology with sufficient coverage and sensitivity that can

be applied across different numbers of cells and species, we
next investigated whether BacDrop could also reproducibly

identify subpopulations of cells within the same isolate. We

chose to explore biological heterogeneity in the antibiotic-sus-

ceptible clinical isolate K. pneumoniae MGH66 in the absence

and presence of antibiotic perturbations (Figure 3A; Table S2).

We split one MGH66 culture (OD600 � 0.2) into four identical cul-

tures, one of which was left untreated, whereas the other three

were treated with an antibiotic with a different mechanism of

action including: inhibition of cell wall synthesis (meropenem),

DNA synthesis (ciprofloxacin), and protein synthesis (genta-

micin). This experiment was performed in duplicate for two bio-

logical replicates (replicate 1 and replicate 2). For each replicate,

bulk RNA-seq on samples collected by using the same treatment

schemes revealed distinct cellular responses to each antibiotic

relative to the untreated control. As expected (Figure 3B), cipro-

floxacin induced genes involved in the major DNA damage

response (SOS response), e.g., recA, whereas gentamicin treat-

ment induced a group of heat-shock chaperone proteins, e.g.,

ibpB. In contrast, at 30 min, minimal transcriptional responses

were observed in bulk from meropenem treatment, under the

condition used (OD600 � 0.2, meropenem concentration 2 mg/

mL), which is consistent with previous observations.42

To validate BacDrop, we applied round 1 plate barcoding to

each of these 4 samples separately using one of 4 distinct sets

of CB1 (96 different CB1s corresponded to each sample,

Table S1) that allowed us to confirm the original identity of these

4 samples and associate them with the corresponding antibiotic

exposure. We then mixed all cells from the different treatments

for round 2 droplet barcoding and library construction (Fig-

ure 3A). Each of the replicate libraries contained roughly 1 million

cells. Replicate 1 was sequenced with �5 billion paired-end

reads (�5,000 reads per cell) and replicate 2 with �3 billion

paired-end reads (�3,000 reads per cell).

To confirm BacDrop’s robustness and reproducibility, we

compared the two replicate experiments. For the depth of

sequencing performed for each experiment, we obtained

�80,000 cells with R15 mRNA genes per cell, with an average

of �30 unique mRNA genes detected per cell. No strong batch

effect was observed between the replicates. Treatment with

the different antibiotics resulted in cell clustering based on their

treatment conditions (Figures 3C–3F). The overlap between the

meropenem-treated and untreated samples (Figure S2) was

consistent with their bulk RNA-seq results that suggest relatively

minimal transcriptional response to meropenem, at least on the

population level (Figure 3B). Across both replicates, 72% and

56% of the ciprofloxacin-treated cells belonged to the SOS-

response cluster, whereas 72% and 66% of the gentamicin-

treated cells belonged to the heat-shock response cluster, with

good reproducibility across the two replicates (Figure 3E). These

experiments confirmed that BacDrop could reproducibly identify

population heterogeneity.

BacDrop reveals within-population heterogeneity with
subpopulations driven largely by the expression
of MGEs
We next analyzed in depth the untreated culture of MGH66

at the single-cell level to understand whether it contained

any previously unrecognized within-population heterogeneity in
Cell 186, 1–15, February 16, 2023 5



Figure 3. Validating BacDrop’s ability to distinguish subpopulations based on distinct responses to different antibiotic treatments

(A) Creation of a BacDrop library containing cells of the same bacterial strain under 4 different conditions, including treatment of meropenem, ciprofloxacin,

gentamicin, and untreated control. Cells were collected and processed separately until after round 1 plate barcoding. The four samples were then pooled for

round 2 droplet barcoding and library construction. Two biological replicates were performed.

(B) Bulk RNA-seq results of cells exposed to the same antibiotic conditions as in (A). The abundance for each treated condition and comparison between the

treated and untreated cultures are shown as well as significantly upregulated and downregulated genes from each treatment (performed in triplicates).

(C) UMAP plot based on the original identity of the 6 samples treated with meropenem (M and its replicate M.2), ciprofloxacin (C and its replicate C.2), and

gentamicin (G and its replicate G.2).

(D) Unsupervised UMAP showed three clusters with significantly (p < 0.05) higher expression of genes in the SOS-response pathway, heat-shock response, and

genes encoding an IS903B transposase (MGE).

(E) No strong batch effect was observed between the two biological replicates with the same treatment conditions.

(F) Expression of a representative gene from each cluster was highlighted on the UMAP. The purple color bars represent the normalized expression of a gene

across all cells analyzed.

See also Figure S2.
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transcriptional states. From this untreated condition, we recov-

ered�50,000 cells with at least 15 uniquemRNA genes detected

in each cell, and we identified two major subpopulations in both

replicates using an unsupervised clustering approach (see

Figures 4A and S3A and method details). Although most cells

fell into one major homogeneous subpopulation, 2,191 cells

(�4.5%) fell into the MGE subpopulation driven by IS903B trans-

posase genes (Figure 4B), which has 83 copies in MGH66
6 Cell 186, 1–15, February 16, 2023
genome. (In fact, this MGE subpopulation is present in all 8 sam-

ples, untreated andantibiotic-treated replicates, suggestingboth

that thepresenceof thisMGEpopulation is a robust phenomenon

and that BacDrop is reproducible; Figures 3D–3F and 4A.)

Previously, we had functionally shown that MGH66 and

several other K. pneumoniae isolates have high-level transposon

insertional mutagenesis activity, which contributes to their high

frequencies of carbapenem-resistance acquisition43; however,
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Figure 4. BacDrop reveals within-population

heterogeneity driven largely by MGE

(A and B) In untreated culture of MGH66, a popula-

tion showing high-level expression of IS903B

transposase (MGE, 4.5%; green) was detected.

(C and D) Flow cytometry of reporter MGH66 strains

expressing GFP driven by the promoter of IS903B

(MGH66:PIS903B:gfp) shows a heterogeneous

expression pattern. The MGE.high population

(�10% of the whole population) and MGE.low

population (�10% of the whole population) were

sorted into MHB medium without antibiotics, and

mutation frequencies (D) were measured under

meropenem treatment. Experiments in (C) and

(D) were repeated with nine biological replicates.

Error bars were plotted as the standard deviation.

The Student’s t test was used for statistical analysis.

(E and F) MGE-driven subpopulations were de-

tected in another K. pneumoniae clinical isolate

BIDMC35. UMAP (E) and heatmap (F) shows 4

subpopulations differing from the majority popula-

tion (cluster 0; red) of BIDMC35. Clusters 2, 3, and 4

are each driven by the high expression of a different

transposase gene. In cluster 1, nearly all highly ex-

pressed genes belong to a prophage in BIDMC35

genome. Expression levels of all genes are normal-

ized to expression in cluster 0 (F).

See also Figures S3 and S4.
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bulk RNA-seq had failed to show elevated expression of any

transposon genes in these strains. Here, the existence of this

subpopulation with high-level transposon expression provides

a possible explanation for the strain’s elevated carbapenem-

resistance frequencies, with resistance likely emerging from

this small subpopulation. To test this hypothesis, we engineered

a MGH66 reporter strain expressing the green fluorescent pro-

tein44 driven by the promoter of one copy of the IS903B trans-

pose genes (MGH66: PIS903B:gfp). Consistent with the

BacDrop results, we observed heterogeneous expression

pattern of gfp in this reporter strain by flow cytometry (Figure 4C).

We then performed fluorescence-activated cell sorting (FACS)

and sorted the MGE.high (high GFP expression) and MGE.low

(low GFP expression) populations (Figures 4C, 4D, and S3B)
and measured their mutation frequencies

under meropenem treatment using a modi-

fied fluctuation analysis.43 The MGE.high

population had at least 7 times higher

mutation frequencies than the MEG.low

population under meropenem treatment

(p = 0.002) (Figure 4D), confirming our

hypothesis that resistance is more likely

to emerge from this subpopulation highly

expressing MGE genes and revealing

phenotypic consequences of the different

subpopulations.

To examine the robustness of the MGE

subpopulation in our datasets and to

compare the relative values of deeper

sequencing of fewer cells versus more

shallow sequencing of more cells, we
analyzed the untreated samples in replicate 1 and replicate 2 li-

braries separately, along with a smaller BacDrop library contain-

ing �3,000 cells of MGH66 similarly collected but sequenced

more deeply. We sequenced this smaller library to obtain

80,000 reads per cell with recovery of �2,000 cells with at least

15 mRNA genes per cell, and collectively, an average of 85

mRNA genes detected per cell of these �2,000 cells. Analysis

of this smaller library detected the same MGE population identi-

fied in the larger cell population, albeit less distinctly (Figure S4).

In contrast, both the replicates of the larger libraries, even when

sequenced only to a depth to obtain �30 mRNA genes per cell,

identified an additional small subpopulation (0.25%–0.36%)

featuring high-level expression of maltose transport genes that

was not identified in the smaller library, despite its deeper
Cell 186, 1–15, February 16, 2023 7
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sequencing and higher coverage (Figure S4). Together, these re-

sults show that analyzing larger numbers of cells can help to

reveal heterogeneity within a bacterial population, which is

consistent with analyses in eukaryotic systems.16,17,19,25,26,28,29

Although the coverage can be higher when fewer cells were

analyzed, increasing the scale, rather than the coverage, re-

sulted in the identification of a rare population.

To determine whether MGE-driven subpopulations are unique

to MGH66, we applied BacDrop to another K. pneumoniae clin-

ical isolate (BIDMC35) (Table S2). BIDMC35 is a carbapenem-

resistant isolate in which carbapenem resistance results from a

transposon disruption of the major porin gene ompK36 and the

transposon-mediated high-level expression of a b-lactamase

gene blaOXA-663.
45 We again observed MGE-driven subpopula-

tions, as in MGH66. Analyzing 9,748 BIDMC35 single cells that

passed the analysis threshold at a sequencing depth of �2,000

reads per cell (Figures 4E and 4F), we identified three clusters

each driven by a unique transposon gene, including cluster 2

driven by an IS4321 family transposase (195 cells, 2%), cluster

3 driven by the insH transposase (146 cells, 1.5%), and cluster

4 driven by an IS110 family transposase (133 cells, 1.4%).

Together with the observation in MGH66, it reinforces the finding

that variable expression ofMGEsmay be one of themajor drivers

of population heterogeneity.

In BIDMC35, besides these MGE-driven subpopulations, we

observed another unique subpopulation (190 cells, 2%) driven

by the 30- to 320-fold higher expression of a group of prophage

genes (Figures 4E and 4F; Table S6), compared with the rest of

the populations, indicating that this cluster of cells was likely un-

dergoing spontaneous phage induction. This observation is

similar to the phage-induction subpopulation reported in the mi-

croSPLiT study.12 Additionally, we found the expression of

blaOXA-663 is significantly lower in this phage-induction subpop-

ulation (Figure 4F), possibly caused by spontaneous phage

induction.

BacDrop reveals heterogeneous stress responses to
antibiotic exposure
Finally, to determine if a perturbed populationmight have hetero-

geneous dynamic transcriptional responses, we analyzed sin-

gle-cell responses after different antibiotic exposures

(Figures 3A and S5). Although ciprofloxacin or gentamicin re-

sulted in clear transcriptional responses following treatment,
Figure 5. BacDrop reveals heterogeneous responses to meropenem e

(A) Besides the subpopulation highly expressing the IS903B transposase genes

stress-response subpopulation, a cell wall synthesis subpopulation, a DNA

subpopulation.

(B) Dot plot showing the expression of genes that are significantly different amon

(C) Validation of subpopulations identified in the meropenem-treatedMGH66 usin

(rseB [green] + yidC [red]) and cspD-expressing subpopulation (cspD [green] + rihC

control to show that more than 99% of cells were successfully permeabilizate

identified. The scale bar size is 15 mm.

(D) Across 20 fields of view, the RNA FISH results showed that �1% of cells co-e

resultswere statistically consistentwith theBacDrop result inwhich�0.6%of cells

way ANOVA was performed for the statistical analysis (p = 0.348). This experime

(E) Flow cytometry of reporter MGH66 strains expressing GFP driven by the promo

a heterogeneous response to meropenem (green) but not to ciprofloxacin (blue)

See also Figure S5 and Table 1.
there was no obvious heterogeneity of response at the single-

cell level under the conditions examined. In contrast, merope-

nem treatment, which only induced minimal transcriptional re-

sponses in bulk (Figure 3B), despite impacting cell killing at

30 min (Figure S5A), demonstrated heterogeneous responses

on the single-cell level. Meropenem treatment induced four inter-

esting subpopulations with distinct molecular responses, in

addition to the MGE subpopulations (Figures 5A, 5B, and S5B;

Table S7). These subpopulation clusters were characterized by

co-upregulation of genes involved in: (1) the stress response

(e.g., rseB, yidC, and yhcN), (2) cell wall/membrane synthesis

(e.g., nlpl and lpxH), (3) cell wall synthesis and DNA replication

(e.g., dnaG and ftsI), or (4) cold shock response (e.g., pnp and

cspD). Notably, although CspD was initially identified as a cold

shock protein, it has also been reported to be a DNA-binding

toxin that inhibits DNA synthesis and induces the formation of

persisters in E. coli.46

Having identified genes highly expressed in specific sub-

populations after meropenem treatment (Figure 5B; Table 1),

we used RNA fluorescence in situ hybridization (FISH) to

validate the existence of the ‘‘stress response’’ and ‘‘cspD-

expressing’’ subpopulations by probing for two genes highly

co-expressed in each cluster (rseB and yidC, stress-response

cluster; cspD and rihC, cspD-expressing cluster) (Figure 5C).

RNA FISH confirmed both the existence and proportion of

cells assigned to the clusters identified by BacDrop

(Figures 5C and 5D).

We also validated BacDrop using fluorescence cytometry to

independently quantify cell numbers in the stress response and

cspD-expressingclusters.WeengineeredMGH66 reporter strains

expressing GFP44 driven by the promoter of yhcN, a stress-

responsegene (MGH66:PyhcN:gfp), orcspD (MGH66:PcspD:gfp).

Consistent with BacDrop results, meropenem but not ciprofloxa-

cin induced heterogeneous expression of both yhcN and cspD

(Figure 5E).Weconfirmed that the cellswith reduced fluorescence

of MGH66:PcspD:gfp (GFP-low) were live and not simply dying

using a live-dead stain and plating for colony forming units

(Figure S6). Interestingly, the GFP-low population had lower fluo-

rescence than the untreated population, suggesting that there

may be suppression of cspD expression in this population. Of

note, the fractions of cells highly expressing these two genes

were greater by flow cytometry than by BacDrop; this would be

consistent with the fact that RNA and protein levels are not
xposure

(MGE), meropenem treatment induced heterogeneous responses, including a

replication and cell wall synthesis subpopulation, and a cspD-expressing

g clusters and the percentage of cells expressing these genes in each cluster.

g RNA FISHwith double marker genes from the stress-response subpopulation

[red]). A probe targeting the housekeeping gene ef-tuwas used as the positive

d and hybridized. Subpopulations co-expressing double marker genes were

xpressed cspD and rihC, and �10% of cells co-expressed rseB + yidC. These

co-expressedcspDand rihC, and�8%of cells co-expressed rseB+ yidC. Two-

nt was repeated twice, and data were plotted separately from two replicates.

ter of yhcN (MGH66:PyhcN:gfp; left) or cspD (MGH66:PcspD:gfp; right) shows

treatment, relative to untreated control (red).
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Table 1. Marker genes identified in clusters of the meropenem-treated sample

Gene

name

Gene

product Function

Biological

pathways Cluster

Log2 fold

change p value

ftsI PBP3 target of b-lactams cell wall synthesis DNA replication and

cell wall synthesis

5.2957 <1.00E�300

dacC PBP6 target of b-lactams cell wall synthesis stress response 3.7036599 1.81E�40

dtpB DtpB transportation of

b-lactams

dipeptide/tripeptide

transport

cell wall synthesis 6.281594 <1.00E�300

suhB SuhB membrane protein

transport and insertion

cell wall/membrane

synthesis

cell wall synthesis 4.406598 1.39E�125

lpxH LpxH lipid A biosynthesis cell wall/membrane

synthesis

cell wall synthesis 7.605374 <1.00E�300

nlpl Nlpl cell wall synthesis,

bind to PBP4 and PBP1A

cell wall/membrane

synthesis

cell wall synthesis 3.487722 2.54E�87

rffG RffG LPS synthesis cell wall/membrane

synthesis

cell wall synthesis 4.280285 5.97E�107

dnaG DnaG DNA replication DNA replication DNA replication and

cell wall synthesis

4.490715 <1.00E�300

yidC YidC membrane damage response stress response stress response 4.0687447 8.25E�100

spy Spy membrane damage response stress response stress response 4.0142941 2.33E�98

rseB RseB membrane damage response stress response stress response 5.1874707 2.26E�218

yhcN YhcN cytoplasmic acid stress stress response stress response 6.1654092 <1.00E�300

hscA HscA cold shock stress response stress response 3.2262902 5.75E�26

fumC FumC oxidative stress stress response DNA replication and cell

wall synthesis

5.304257 <1.00E�300

ychF YchF oxidative stress stress response DNA replication and cell

wall synthesis

5.286679 <1.00E�300

groS GroES stress response stress response DNA replication and cell

wall synthesis

4.510794 2.41E�261

rihC RihC DNA damage response stress response cspD expressing 6.16122 <1.00E�300

cspD CspD persister formation DNA replication inhibition cspD expressing 6.342385 <1.00E�300

IS903B IS903B insertion sequence mobile genetic elements MGE 4.463117 <1.00E�300
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necessarily well correlated in single cells,9 as one copy of mRNA

can produce one to hundreds of copies of proteins and mRNA is

less stable than protein. Nevertheless, the heterogeneous re-

sponses were observed by both methods of measurement.

Taken together, under meropenem perturbation, we observed

strong heterogeneous responses driven by various stress-

response pathways that had been previously masked in bulk

RNA-seq results. Rather than uniformly turning on a specific

stress-response pathway in all cells, a diverse range of stress re-

sponses appears to be induced in different subpopulations,

which could potentially contribute to heterogeneous cell fates

such as cell lysis or antibiotic tolerance.

BacDrop identifies a subpopulation with reduced
meropenem efficacy and increased persisters
Given CspD’s reported role in inducing the formation of anti-

biotic-tolerant persisters in E. coli,46 we wondered whether anti-

biotic-tolerant cells might make up a greater percentage of the

GFP-high than the GFP-low subpopulation, with cells in which

cspD had been induced surviving preferentially under merope-

nem treatment. Because CspD plays a role in persister formation

rather than maintenance, we anticipated that some cells might
10 Cell 186, 1–15, February 16, 2023
induce cspD and thus make high levels of GFP, become anti-

biotic tolerant, then turn off CspD expression resulting in

reduced expression of GFP as the GFP is degraded. Despite

this possibility, we nevertheless hypothesized that the GFP-

high subpopulation might still be enriched for tolerant cells

compared with the GFP-low subpopulation. We performed

FACSwithMGH66:PcspD:gfp coupledwith dead-cell stain, after

a 30-min exposure tomeropenem, and sorted live cells intoGFP-

high and GFP-low (Figure 6A) subpopulations directly into liquid

media with and without meropenem. (We confirmed that all

sorted cells have similar survival rates on LB agar plates without

antibiotics; Figure S6.) Indeed, the GFP-high subpopulation was

enriched for meropenem tolerant cells compared with the GFP-

low subpopulation, with evidence of a persister population in the

GFP-high but not the GFP-low subpopulations (Figure 6B). We

verified that no genetic mutations were acquired by these

persister cells via whole genome sequencing. Consistent with

this observation, we also observed �100 times more persister

cells in a MGH66 strain over-expressing cspD, although the

overexpression of cspD did not reduce antibiotic susceptibility

as reflected in the minimal inhibitory concentration of merope-

nem (Figures 6C and 6D). Together, these results confirmed



A B

C D

Figure 6. cspD-expressing cluster was enriched with persister cells

(A) MGH66:PcspD:gfp cells were analyzed by FACS at time 0 and 30 min after exposure to meropenem (2 mg/mL). After 30 min, live cells fromGFP-low and GFP-

high subpopulations were identified and sorted.

(B) GFP-low and GFP-high subpopulations sorted from meropenem-treated MGH66:PcspD:gfp cells differed in their response to meropenem. GFP-low and

GFP-high subpopulations were sorted directly into media with no antibiotic or with meropenem (2 mg/mL). Samples were then taken over time and plated on solid

agar to enumerate CFU. Persisters only emerged from the GFP-high subpopulation. The limit of detection is indicated by black-dashed line. Three asterisks from

the treated GFP-low subpopulation indicate that no persister was observed.

(C and D) Overexpression of cspD in MGH66 increased numbers of persisters but did not affect the susceptibility of meropenem. cspD driven by the arabinose

inducible promoter pBAD was transformed into MGH66. (C) Induction of cspD with 1% arabinose did not affect the minimal inhibitory concentration (MIC) of

meropenem. (D) When cspD was induced with 1% arabinose and treated with meropenem at 2 mg/mL (purple), the numbers of persister cells were significantly

greater at 6- and 24-h time points (asterisk shows significance at 6-h and 24-h time points) compared with the culture without arabinose induction under 2 mg/mL

meropenem treatment (blue).

All experiments were repeated 3 times. Error bars were plotted as the standard deviation. The Student’s t test was used for statistical analysis.

See also Figure S6.
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the role that cspD plays in persister formation in a subpopulation

of K. penumoniae MGH66.

DISCUSSION

We report a novel bacterial scRNA-seqmethod, BacDrop, that is

robust and reproducible and leverages droplet-based technol-

ogy to enable the massively parallel profiling of the transcrip-

tional program of thousands to millions of single bacterial cells.

In line with analyses in mammalian systems,16,25–29 we demon-

strated that studying large numbers of cells can robustly identify

population heterogeneity including rare subpopulations even

with the relatively sparse per cell coverage afforded by single-

cell technologies (Figure S4). We applied BacDrop to study the

naturally occurring heterogeneity in a heretofore presumed

uniform culture of bacteria and its heterogeneous responses to

perturbation. Due to limited scale, previous genome-wide sin-
gle-cell transcriptional studies on smaller numbers of cells (hun-

dreds to thousands) have demonstrated between-population

heterogeneity by artificially mixing different populations.10–12

Here, we characterized both a stable and a dynamic population

of cells derived from the same bacterial isolate and demon-

strated a diversity of states within the stable population and

heterogeneous responses in the dynamic population after

perturbation with antibiotics.

Using BacDrop, we report the observation of within-popula-

tion heterogeneity driven predominantly by the expression of

MGEs in the presumed uniform cultures of K. pneumoniae.

Although MGEs drive genetic diversity by their relatively random

movement in the genome, we find that the expression levels

of individual MGEs are also highly variable within populations

of MGH66 and BIDMC35 (Figure 4). Whether this heterogeneity

in expression is due to genotypic variation resulting from the

movement of genetic elements such as transposon insertions
Cell 186, 1–15, February 16, 2023 11
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or phase variation, to transcriptional changes in response to

stochastic/or local microenvironmental cues, or to epigenetic

mechanisms remains to be understood. However, the conse-

quences of such variation can be significant. We demonstrated

that the high-level expression of MGE genes found only in a

subpopulation of MGH66 contribute to the strain’s propensity

to become carbapenem resistant, consistent with our previous

finding that high-level transposon mutagenesis plays an

important role in high-frequency evolution of carbapenem

resistance.43

Meanwhile, in response to a perturbation such as exposure to

the important antibiotic meropenem, BacDrop revealed a wide

range of transcriptional responses that are masked in bulk

RNA-seq. Interestingly, a diverse range of stress responses

appear to be induced in different subpopulations rather than a

single or uniform response occurring in all cells; this subpopula-

tion diversity could potentially contribute to heterogeneous cell

fates or phenotypic outcomes, including cell lysis or antibiotic

tolerance. It remains to be understood whether this heteroge-

neous stress response occurring in subpopulations is a general

phenomenon in response to stressors or is specific to certain

types of stresses such as meropenem, which may be working

in a more pleiotropic manner than is assumed, thereby eliciting

a wide range of stress responses. Meanwhile, we examined

one such subpopulation defined by high-level expression of

cspD, a gene encoding a toxin that inhibits DNA replication

and induces the formation of persisters but that is not signifi-

cantly upregulated in bulk RNA-seq results. Using both FISH

and flow cytometry, we confirmed that cspD is induced in a

subpopulation after meropenem treatment. Moreover, we found

a higher survival rate under meropenem treatment in the cspD-

induced subpopulation, pointing to its role in antibiotic tolerance

within this subpopulation and more generally, to the importance

of certain responses in some subpopulations in surviving the

lethal effects of antibiotics.

We have developed BacDrop to be a versatile method to char-

acterize the transcriptional programs of thousands to millions of

bacterial cells in multiple species. To demonstrate its utility, we

validated BacDrop in four different pathogenic bacterial species.

We expect that BacDrop should be easily adaptable to more

species, including commensal bacterial strains of the micro-

biome and other environmental species. Therefore, BacDrop

will enable the identification of both heterogeneity in cell types

(species) in amixed community or cell states in a single strain un-

der stable or dynamic conditions.We thus propose that BacDrop

will become a powerful tool for a broad range of studies,

including studies focused on elucidating phenotypic heteroge-

neity, understanding bacterial interactions in microbial commu-

nities, dissecting host-pathogen interactions, expanding our

knowledge of themicrobiome beyond genomes and bulkmetab-

olomics, and investigating the emergence of antibiotic resis-

tance, persistence, and tolerance.

Limitations of the study
Although BacDrop has the capacity to study millions of cells

simultaneously, we are currently limited by sequencing costs

which impact sequencing depth and the information (i.e., genes

per cell) that can be extracted per cell. Nevertheless, we expect
12 Cell 186, 1–15, February 16, 2023
that sequencing costs will continue decreasing and BacDrop will

be a powerful platform for large-scale single-cell experiments in

bacteria. Although we have demonstrated the ability of BacDrop

to work on four major bacterial pathogenic species, including the

gram-negative E. coli, K. pneumoniae, and P. aeruginosa, and

the gram-positive E. faecium (Figure 2F), we nevertheless recog-

nize that there will be phylogenetic biases in performance,

including, as we show, variability in centrifugation in permeabi-

lized cells and also other factors, e.g., permeabilization reagents

and concentrations. We thus anticipate that limitations will be

present when applying BacDrop to complex bacterial commu-

nities such asmicrobiota samples, with the ability to characterize

the single-cell transcriptional programs of millions of cells

without requiring any prior knowledge of the genomes of interest

outweighing more modest technical limitations of individual

species.
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5. Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P., La
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(2014). Automated design of probes for rRNA-targeted fluorescence in situ

hybridization reveals the advantages of using dual probes for accurate

identification. Appl. Environ. Microbiol. 80, 5124–5133. https://doi.org/

10.1128/AEM.01685-14.
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Forward primer used to amplify the promoter of
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IDT ACTGGGATCCATGCAAGCGTTGTGATGAGAACAT

YhcN_R,

Reverse primer used to amplify the promoter of

yhcN from MGH66 and ligate into pUA139.

IDT ACTGCTCGAGATGCGAT GTT CAC CTC GTC GAA TC

RNA FISH oligos IDT Table S2

Deposited data

BacDrop data This paper GEO: GSE180237

Bulk RNA-seq data This paper GEO: GSE180237

MGH66 persister WGS data This paper GEO: GSE180237
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Key reagent

NxGen RNase Inhibitor Lucigen 30281-2

Lysozyme ThermoFisher 90082

NEBNext rRNA Depletion Kit NEB E7850X
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SUPERase-In RNase inhibitor ThermoFisher AM2696

Maxima H Minus reverse transcriptase ThermoFisher EP0753
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RESOURCE AVAILABILITY

Lead contact
Please direct requests for resources and reagents to the lead contact: Deborah T. Hung (hung@molbio.mgh.harvard.edu)

Materials availability
Plasmids generated in this study are available from the lead contact upon request.

Data and code availability
Sequencing data and the processed counting matrix have been deposited to GEO repository (GEO: GSE180237).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains
Bacterial strains used in this study are listed in Table S2. K. pneumoniae, E. coli, and P. aeruginosawere cultured in Luria-Bertani (LB)

medium or Mueller-Hinton Broth (MHB) with shaking at 37 �C. E. faeciumwas cultured in Todd-Hewitt broth (THB) with shaking at 37
�C. For the GFP experiment, E. coli strains expressing gfp driven by different promoters were cultured separately in LB at 37 �C. Early
exponential growth phase cells (OD600 �0.2) were collected and fixed immediately. For the antibiotic treatment experiment,

K. pneumoniae clinical isolate MGH66 was cultured in MHB at 37 �C until early exponential phase. Then the culture was diluted

to OD600 0.05 in MHB. After growing for two doublings (� 40min, OD600�0.2), the cultures were split into four equal volume cultures.

One culture was left untreated, while the other three were treated with relevant antibiotic at breakpoint concentrations set by the

Clinical and Laboratory Standards Institute (CLSI): 2 mg/mL for meropenem, 2.5 mg/mL for ciprofloxacin and 4 mg/mL for gentamicin.

After 30 min, 7 mL of cells were collected from each of these cultures, and immediately proceeded with the cell fixation protocol. For

the bulk RNA-seq experiments, samples were collected using the same treatment schemes, and three biological replicates were

included in each condition. For the BIDMC35 experiment, BIDMC35was cultured in LBmedium at 37 �C until early exponential phase

(OD600 �0.2). 7 mL cells were then collected and immediately proceed with the cell fixation protocol.
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METHOD DETAILS

Cell fixation and permeabilization
All reagents (key resources table) for cell fixation and permeabilization were kept ice-cold. Up to 10 billion bacterial cells grown at

specified conditions were collected by centrifuging at 5525 x g for 10 min at 4 �C. The supernatant was removed and cell pellets

were resuspended in 7 mL fresh, ice-cold 4% formaldehyde (Sigma, CN 47608) in 1x PBS and incubated with shaking overnight

at 4 �C (Digital Platform Rocker Shaker, VWR). Following overnight fixation, cells were centrifuged at 5525 x g for 10 min at 4 �C.
The supernatant was removed and cells were resuspended in 7 mL PBS-RI (1x PBS supplemented with 0.1 U/mL NxGen RNase

inhibitor (Lucigen, CN 30281)). Cells were centrifuged again at 5525 x g for 10 min at 4 �C and pellets were resuspended in

700 mL PBS-RI. Subsequent centrifugations were carried out at 7000 x g for 5 minutes at 4 �C. We noticed that some species,

e.g., P. aeruginosa, do not pellet very well at this centrifugation speed (Figures S1E and S1F). Thus, we recommend optimizing

the centrifugation speed for the specific species of interest. Cells were centrifuged and resuspended in 700 mL 50% Ethanol in

PBS-RI. Cells were then washed twice with PBS-RI. After the second wash, cells were resuspended in 1 mL 100 mM Tris-HCL

(pH 7.5) supplemented with 0.1 U/uL NxGen RNase inhibitor. Cells were diluted 100x and quantified using a hemocytometer

(VWR, CN 102966).

We found that the number of cells in a permeabilization reaction is critical for achieving sufficient permeabilization. Insufficient per-

meabilization may result in inefficient rRNA depletion and gDNA removal. For 1 permeabilization reaction, up to 40 million cells were

centrifuged and resuspended in 250 mL 0.04%Tween-20 in 1x PBS. If more cells are desired, multiple parallel reactions can be set up.

Immediately following a 3-minute incubation on ice, 1 mL cold PBS-RI was added, and cells were spun down and resuspended in

200 mL lysozymemix (100mMTris (pH 8.0), 50mMEDTA pH 8.0, 0.25 U/mL NxGen RNase Inhibitor, 2.5 mg/mL lysozyme). Cells were

then incubated at 37 �C for 15 minutes. After the incubation, 1 mL PBS-RI was added and cells were washed twice with 175 mL PBS-

RI. After the second wash, cells were resuspended in 150 mL PBS (without RNase inhibitor added) and cell concentrations were

measured by diluting cells 100 times and counting using a hemocytometer.

In-cell rRNA depletion and gDNA removal
Immediately after cell permeabilization, up to 40 million cells were centrifuged and resuspended in 11 mL nuclease-free H2O. The cell

number is critical for achieving efficient rRNA depletion (Figure S1D). 2 mL NEBNext Bacterial rRNA depletion solution and 2 mL Probe

Hybridization Buffer (NEB, CN E7850) were mixed with cells on ice. The hybridization was conducted per the following (lid temper-

ature set to 55 �C): 50 �C for 2 minutes, ramp down to 22 �C at 0.1 �C /second, and hold at 22 �C for 5 minutes. Probe hybridization

was immediately followed by RNase H digestion by mixing the probe-hybridized cells with 2 mL RNase H reaction buffer, 2 mL Ther-

mostable RNase H (NEB, CN E7850), and 1 mL nuclease-free H2O, followed by a 30-minute incubation at 50 �C (lid temperature set to

55 �C). The 20 mL reaction was centrifuged and resuspended in 10 mL DNase-RI buffer (1 mL DNase I reaction buffer (Sigma, CN

AMPD1), 1 mL DNase I (Sigma, CN AMPD1), 0.025 mL NxGen RNase inhibitor (Lucigen, CN 30281), 8 mL nuclease-free H2O). The re-

action was incubated at room temperature for 30 minutes, and the DNase treatment was stopped by adding 1 mL Stop Solution

(50 mM EDTA) and incubating at 50 �C for 10 minutes. After the incubation, cells were centrifuged and washed twice with 100 mL

PBS-RI. After the second wash, cells were resuspended in 20 mL 0.5x PBS supplemented with 1 U/mL SUPERase-In RNase inhibitor

and used immediately for in-cell reverse transcription.

In-cell reverse transcription, round 1 cell barcoding and sample multiplexing
The round 1 plate barcoding and samplemultiplexing is achieved via RT reactions in 384- or 96-well plates. 384 RT primers (Table S1)

containing UMI sequences and round 1 plate barcodes (CB1) were synthesized at Integrated DNA Technologies at 100 mM concen-

tration. The primers were diluted with ddH2O to a working concentration of 25 mM, and 2.5 mL of each primer was aliquoted into in-

dividual wells of the 384- or 96- well plates. The rRNA and gDNA depleted cells was diluted with nuclease-free H2O supplemented

with 1 U/mL SUPERase-In RNase inhibitor and added to the plate containing RT primers (1 mL cells per well). Then the cell-primer mix

was incubated at 55 �C for 5 minute and immediately put on ice. For each well, the RT master mix, containing 0.25 mL DTT (100 mM),

0.25 mL dNTP (10mMeach), 0.25 mL SUPERase-In, 1 mL RT buffer, 0.25 mLMaximaHMinus reverse transcriptase (Thermo Scientific,

CN EP0753), was added and the RT reaction was incubated as follows (set lid temperature to 60 �C): 22 �C for 30 min, 50 �C for

10 min, 3 cycles of [8 �C for 12 s, 15 �C for 45 s, 20 �C for 45 s, 30 �C for 30 s, 42 �C for 2 min, 50 �C for 3 min], 50 �C for 5 min,

hold at 4 �C.

In-cell cDNA 3’ poly-A tailing
After RT, cells were recovered and pooled from 384- or 96- well plate. Formultiplexed samples, we suggest to only pool cells from the

same sample together, generating individual pools for each sample. This will allow more flexibility to adjust cell numbers of different

samples during droplet generation. Then the pooled cells were centrifuged and each pool was resuspended 40 mL nuclease-free H2O

supplemented with 1 U/mL SUPERase-In. The poly-A tailing reaction was set up as the following: 38 mL cells, 5 mL 10x terminal

transferase buffer, 1 mL dATP (100 mM) (NEB, N0446S), 1 mL SUPERase-In, 5 mL terminal transferase (TdT) (NEB, CN M0315L).

The reaction was incubated at 37 �C for 1 hour. Then 10 mL 0.2 M EDTA was added to each 50 mL reaction and incubated at
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room temperature for 10 minutes. Cells were then centrifuged and resuspended in 10 mL nuclease-free H2O supplemented with 1 U/

mL SUPERase-In. Cells were diluted and concentrations were quantified.

Droplet generation
The Chromium Next GEM Chip H (10x Genomics, PN 1000161) and Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit

(10x Genomics, PN 1000176) was used for the droplet generation. The unused wells were filled with 70 mL (row 1), 50 mL (row 2), and

40 mL (row 3) 50% glycerol solution. The desired number of cells was diluted to 33.75 mL with nuclease-free H2O supplemented with

1 U/mL SUPERase-In. Right before loading the chip, 33.75 mL cells were mixed with a PCR master mix containing 37.5 mL KAPA HiFi

HotStart ReadyMix (Roche, CN KK2602), 2.25 mL second strand synthesis primer SMRT_dT (10 mM) (key resources table), and 1.5 mL

Reducing Agent B (10x Genomics, PN 2000087). The chip was loaded with 70 mL PCR-cell mix (row 1), 50 mL Gel Beads (row 2), and

40 mL partitioning oil (row 3), and run on the Chromium system. Approximately 100 mL droplet emulsion was obtained in row 3.

Second strand cDNA synthesis and round 2 droplet barcoding in droplets
To increase thermostability of the droplets, we split each 100-mL emulsion into 4 25-mL reactions into PCR tubes (USA Scientific, CN

1402-4700). In each reaction, 25 mL 5% FC-40 oil (RAN Biotechnologies, CN 008-FluoroSurfactant-5wtF) was added to the bottom

and 50 mL mineral oil (Sigma, CNM5904) was added on the top. The 2nd strand cDNA synthesis and round 2 cell barcoding was per-

formed as follows: 95 �C for 30 s, 39 �C for 5 min, 65 �C for 10 min; then 4 cycles of [98 �C for 20 s, 62 �C for 15 s, 72 �C for min], 72 �C
for 5 min, hold at 4 �C.

Breaking emulsions and cDNA purification
After the round 2 cell barcoding was finished, the mineral oil and FC-40 oil was removed from the PCR tube, being careful and not to

remove the middle layer which contains the emulsion. The emulsion was then combined. In cases where only a small number of cells

are desired for library construction, the emulsion can be kept separately but all downstream reaction volume should be reduced

accordingly. Each 100 mL emulsion can then be broken by adding 125 mL Recovery Agent (10x Genomics, PN 2000087). The tubes

were inverted 10 times and centrifuged briefly to ensure that all droplets were broken. 125 mL Recovery Agent/Partitioning Oil (pink)

from the bottom of the tube was then removed. cDNA was first purified using Dynabeads. In brief, for each reaction, a mix containing

182 mL cleanup buffer (10x Genomics, PN 2000088), 8 mL Dynabeads MyOne SILANE (10x Genomics, PN 2000048), 5 mL Reducing

Agent B, and 5 mL Nuclease-free water was added. After mixing and incubating at room temperature for 10 minutes, samples were

placed on amagnetic separator andwashed twice with freshly prepared 80%ethanol. After removing ethanol from the second wash,

each sample was eluted in 40.5 mL elution buffer that was prepared by mixing 98 mL Buffer EB (Qiagen, CN 19086), 1 mL 10% Tween

20 (Teknova, CN T0710), and 1 mL Reducing Agent B. Then 40 mL of the elution was transferred to a fresh PCR tube and subjected to a

0.6x Cleanup with AMPure XP beads (Beckman Coulter, CN A63881). The cDNA was then eluted in 30 mL nuclease-free water.

cDNA enrichment
Before the cDNA enrichment, a qPCR reaction, containing 1 mL cDNA, 5 mL KAPA HiFi HotStart Ready Mix, 0.3 mL primer P5 (10 mM),

0.3 mL primer SMRT_PCR (10 mM) (key resources table), 2 mL 5x SYBR green (VWR, CN 12001-796), and 1.4 mL nuclease-free water,

was set up to determine cycle numbers of the cDNA enrichment in a real-time thermocycler using the following program: 98 �C for

3 min, 30 cycles of [98 �C for 20 s, 67 �C for 20 s, 72 �C for 3 min], 72 �C for 5 min, hold at 4 �C. The cycle numbers at which the qPCR

reaction reaches early exponential amplification phasewas determined as the cycle numbers for cDNA enrichment. For cDNA enrich-

ment, 25 mL of cDNA was mixed with 125 mL KAPA HiFi HotStart Ready Mix, 7.5 mL primer P5 (10 mM), 7.5 mL primer SMRT_PCR

(10 mM), and 85 mL nuclease-free water. The cDNA was enriched using the same program as the qPCR reaction, using the cycle

numbers determined from the qPCR reaction. The enriched cDNA was purified using 0.6x AMPure XP beads and eluted in 50 mL

nuclease-free water.

Illumina sequencing library construction
The Illumina Nextera XT DNA library preparation kit (Illumina, CN FC-131-1096) was used to prepare sequencing libraries with these

following modifications: � 2 ng enriched cDNA and 4 mL ATM was used for each 50 mL tagmentation reaction. Following tagmenta-

tion, 2.5 mL primer P5 (5 mM) and 2.5 mL Index 1 primer (N7**, Illumina, CN FC-131-2001) was used for the PCR enrichment. The PCR

reaction was removed from the thermocycler and immediately put on ice after 5 cycles of PCR amplification. Then a qPCR reaction,

containing 5 mL Nextera XT PCR reaction, 3 mL NPM, 1 mL primer P5 (5 mM), 1 mL Index 1 primer, 3 mL SYBR green, and 2 mL nuclease-

free water, was set up to determine the remaining cycle numbers of the library enrichment using the following program: 72 �C for

3 min, 95 �C for 30s, 25 x [95 �C for 10 s, 55 �C for 30 s, 72 �C for 30 s], 72 �C for 5 min, hold at 10 �C. The cycle numbers at which

the qPCR reaction reaches one third of the fluorescence saturationwas determined as the remaining cycle numbers for library enrich-

ment. Then the remaining 45 mL library enrichment PCR reaction was put back to a thermocycler and amplified using the same

program with cycle numbers determined from the qPCR. The libraries were then subjected to a 0.6x cleanup with AMPure XP beads

and eluted in 25 mL nuclease-free water.
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Illumina sequencing of BacDrop libraries
Libraries were diluted to desired concentrations and sequenced on the Illumina NovaSeq 6000 platform with standard sequencing

primers, using the following specifications: Read 1: 60 bp; Read 2: 39 bp; Index 1: 8 bp; Index 2: 16 bp. Depending the scale of the

experiment and the sequencing depth desired, NovaSeq 6000 SP (Illumina #20027464), S1 (Illumina #20012865), or S2 (Illumina

#20012862) reagent kits were used.

Bulk library construction
To construct sequencing libraries from bacterial cultures, cell pellets collected from 1 mL early exponential phase cultures were re-

suspended in 500 mL TRIzol Reagents (ThermoFisher, CN 15596026) and frozen at -80 C for at least 20 min. Cells were then thawed

andmixed with 250 mL of 0.1mmdiameter Zirconia/Silica beads (BioSpec Products), and lysedmechanically via bead-beating for 90

second at 10 m/sec on a FastPrep (MP Bio). After addition of 0.1 mL chloroform, each sample tube was mixed thoroughly by inver-

sion, incubated for 3 minutes at room temperature, and centrifuged at 12,000 xg for 15 minutes at 4�C. The aqueous phase was

mixed with an equal volume of 100% ethanol, transferred to a Direct-zol spin column (Zymo Research, CN R2051), and RNA was

extracted according the Direct-zol protocol. The sequencing libraries were then generated using the RNAtag-Seq protocol.47

To construct sequencing libraries from fixed cells, or fixed and permeabilized cells, 20 mL cells were pelleted and resuspended

20 mL lysis buffer (50 mM Tris pH 8.0, 200 mM NaCl, 25 mM EDTA pH 8.0) supplemented with 1.6 mL proteinase K (50 mg/mL). Cells

were lysed at 55 �C for 1 hour, then RNA was purified using 1.5x AMPure RNAClean XP beads (Beckman Coulter, CN A63987) and

eluted in 20 mL nuclease-free water. The sequencing libraries were then generated using the RNAtag-Seq protocol.

Quality control for rRNA and gDNA depletion
The efficiency of rRNA and gDNA depletion can be assessed by lysing and extracting RNA from permeabilized cells. As shown in Fig-

ure S1A, without rRNA and gDNA depletion, three peaks were clearly seen by running the extracted RNA on Agilent TapeStation RNA

1000 high sensitivity tape. The three peaks are 16s rRNA (�1000 bp), 23 rRNA (�2000 bp), and gDNA (> 4000 bp). When an efficient

rRNA and gDNA depletion was achieved, these three peaks will be absent. Due to the capacity of the rRNA depletion kit (10 mg total

RNA maximal), the rRNA depletion efficiency is a function of cell numbers (Figure S1D). In BacDrop protocol, we used 4 x 107 cell for

each rRNA depletion reaction, resulting in a �80% depletion efficiency.

Assessing cell recovery rates during cell permeabilization
In the experiment in Figure S1E, cell numbers were quantified by counting cells using a hemacytometer before and after each

centrifugation step to calculate the cell recovery rates. Equal numbers of cells from each species were mixed before round 1 plate

barcoding (RT). Due to different cell sizes, these four species had different recovered rates at each centrifugation step at 7,000 x g.

After RT and PolyA tailing (right before round 2 droplet barcoding), the cells recovered from each species differed significantly.

Saturation curve for coverage analysis
Three libraries were used to generate the saturation curve to assess the coverage of BacDrop (Figures S1G–S1I). The first library

containing 10,000 cells of E. coli was sequenced at 80,000 reads per cell. Roughly �4,000 cells were recovered with an average

of 90 mRNA genes detected per cell. The second library containing 12,000 cells of K. pneumoniae was sequenced at 80,000 reads

per cell. Roughly �6,000 cells were recovered with an average of 88 mRNA genes detected per cell. The third library containing �1

million cells of K. pneumoniae was sequenced at 5,000 reads per cell. Top 3,000 cells were analyzed with an average of 127 mRNA

genes detected per cell. For the first two libraries, sequencing reads were randomly subsampled to�40,000,�20,000,�4,000 reads

per cell, and the analysis was repeated to calculate numbers ofmRNA genes detected per cell. For the third library, sequencing reads

were randomly subsampled to�4,000,�3,000,�2,000 reads per cell, and the analysis was repeated to calculate numbers of mRNA

genes detected per cell.

BacDrop experiments to assess the numbers of cells required to detect extremely rare populations
Two libraries (Replicate 1 and Replicate 2) were constructed with �250k untreated MGH66 cells. We sequenced Replicate 1 with

�5,000 reads/cell and Replicate 2 with �3,000 reads/cell, and recovered �40k cells and �10k cells from Replicate 1 and Replicate

2, respectively. In these two libraries, a subpopulation highly expressingmaltose transport genes (i.e, lamB) were detected. However,

this subpopulation was not detected in the third library containing only �3,000 untreated MGH66 cells that were collected at the

same condition. The MGE subpopulation was detected in all libraries.

Estimation of mRNA copy numbers in E. coli GFP strains using RT-qPCR
The estimation of mRNA copy numbers was performed using a protocol modified from a previous study.9 In brief, a gfp gBlock frag-

ment was synthesized at Integrated DNA technology. A serial dilution was performed to create gfp dsDNA standards ranging from 1

to 1010 molecules/mL. One mL of the standard was used in a 10 mL qPCR reaction to generate the standard curve. 10 ng RNA from

each GFP strain (�66,666 cells with the assumption that there is 0.15 pg RNA per bacterial cell) was converted into cDNA and

subjected to qPCR reaction together with the gfp dsDNA standards. GFP mRNA copy numbers were estimated by mapping to

the standard curve.
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Killing kinetics
At each time points, cells under antibiotic treatments and the untreated samples were diluted and plated on LB agar plates without

antibiotics. CFUs from each condition were enumerated and normalized to the CFUs of the untreated samples at the same time

points to calculate the killing rates for each time points.

Construction of GFP reporter strains
Weamplified the promoter region of cspD and yhcN fromMGH66 and ligated it into pUA13944 using the BamHI and XhoI sites, resulting

in pUA139-PcspD and pUA139-PyhcN. For the promoter of IS903B, we synthesized the promoter sequence at IDT with BamHI and

XhoI restriction digestion sites as the following sequences and ligated it into pUA139: GGATCCAGAAATTCTCTGTTCCAT

GGTAGATTAATAAGTCCCCAACATTTAAATATACAGGATAATCTAAATATTACTTCGTTCTTATCCTTAATAAATGGCAAAATTTCATTTA

ATTTATTTTTCAAATTATTCTGATGCATGAGTTACCCTATAATTTACACATAAAGAAGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTT

GCTCGAG.

The construct was then transformed into E. coli DH5a and the plasmids were extracted and verified using Sanger sequencing.

Electrocompetent cells of MGH66 was made as previously reported.43 The extracted plasmids were then transformed into

MGH66 via electroporation, generating MGH66: PIS903B:gfp, MGH66: PcspD:gfp and MGH66: PyhcN:gfp.

Cell sorting of untreated MGH66: PIS903B:gfp and measurement of mutation frequencies
For cell sorting of MGH66: PIS903B:gfp, the top 10% cells with high-level GFP expression and bottom 10% of cells with low-level

GFP expression were sorted into MHBmedium without any antibiotics. This 10% sorting window was determined as a compromise

between GFP levels and the time spent on sorting. Ideally, we could sort 1% of the population with the highest GFP expression, but

this would take hours to sort enough cells for the experiments to measure mutation frequencies, which might alter transcript levels or

cell physiology. We found 10% is a feasible time frame for us to get enough cells with sufficient GFP expression for subsequent

experiments. The sorted cells were then used as the starting culture for measuring the mutation frequencies. We used a modified

fluctuation analysis to measure mutation frequencies as previously described.43 In brief, �100 sorted cells were seeded into each

well of 384-well plates, followed by incubating at 37C for 3 hours. After the incubation, cells from three randomly chosen wells

were taken and plated for cell counting. The rest of the wells were added meropenem at 0.06 ug/mL (2x MIC) and treated overnight

at 37C in a humidified chamber. The 2nd daymorning, wells with resistant mutants growing upwere counted to calculate themutation

frequencies. An unsorted culture was included as a control. This experiment was repeated 3 times with 2 biological replicates

each time.

Flow cytometry of the meropenem-treated samples
The cells for flow cytometry were prepared using the same scheme as the meropenem-treated sample for BacDrop. After treating

with meropenem at 2 mg/mL for 30minutes, cells were diluted into PBS at the final concentration of 106 cells/mL and immediately run

through flow cytometer. For the flow cytometry including dead-cell staining, 10 mL propidium iodide (1 mg/mL) (Invitrogen, cat#

P1304MP) was mixed with 1 mL PBS. Cells after treatment were then diluted in the staining buffer at the final concentration of

106 cells/mL, and incubated in the dark at room temperature for 15 minutes followed by running through flow cytometer. To sort

GFP-low and GFP-high populations, cells were run through fluorescence-activated cell sorting (FACS). We sorted �106 cells into

2 mL LB without or with meropenem (2 mg/mL) from each population. A 50 mL aliquot from cells sorted in LB medium without anti-

biotics was immediately diluted and plated on LB agar plates without antibiotics. The colony forming unites (CFU) on LB agar plates

were enumerated to calculate the survival rates. The rest of the cells was used to measure MICs using the standard microdilution

protocol48 or proceeded with the persister assay. For the persister assay, cells were cultured at 37 �C with shaking. At each time

points, a 50 mL aliquot was taken, diluted and plated on LB agar plates without antibiotics. Three replicates were performed in

each experiment.

RNA FISH
RNA FISH probes were designed using Design Probes tool of DECIPHER.49 3 - 5 probes were designed for each target gene (key

resources table). Probes were synthesized at Integrated DNA technologies and labeled with either Cy3 or Alex488 dye at the 5’.

Probes of the same gene were pooled together and diluted into 10 mM stocks. Meropenem-treated MGH66 cells were fixed and per-

meabilized using the same protocol as the cell fixation and permeabilization steps in BacDrop. The hybridization was carried out in

40% hybridization buffer at 50 �C overnight and the following washing steps of washing were performed as described previously.50

Cells were imaged using the DeltaVision widefield deconvolution imaging system with a 60x objective. ImageJ was used for image

data analysis and cell quantification (Table S8).

Whole genome sequencing of the persister cells of MGH66
Genomic DNA was isolated using DNeasy Blood and Tissue Kits (Qiagen, cat. # 69504) and quantified using Qubit dsDNA HS Assay

Kit (Invitrogen, cat. # Q32851). WGS libraries were made using Nextera XT DNA library preparation kit (Illumina, cat. # FC-131–1096).

Then the samples were sequenced using the MiSeq or NextSeq system with 300 cycles, pair-ended. For each strain sequencing,

depth was set at approximately 1003 coverage. BWA mem version 0.7.1251 and Pilon v1.23, using default settings,52 were used
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to align reads against a reference genome assembly and to identify variants, respectively. SNP positions havingmapping quality less

than 10 (MQ < 10) were not considered.

Processing of sequencing data
To build input matrices with gene-barcode information, we created a pipeline that pulls UMI, barcodes 1 and 2. In experiments where

multiple samples were pooled for droplet barcoding, a demultiplexing step based on CB1 was performed to parse different samples.

Threshold of valid cell barcodes, removal invalid cell barcodes, and final count table generation was performed using UMI-tools53

(https://doi.org/10.1101/gr.209601.116). Alignments were performed using BWA51 and annotation of bam files were done using

FeatureCounts.54

Analysis of BacDrop data
Once the count tables were made, we used the standard workflow of the R package Seurat 355 (https://doi.org/10.1038/nbt.4096,

https://doi.org/10.1016/j.cell.2019.05.031) (v.3.2.2). We excluded genes that were not expressed in any cells in the dataset, and

excluded cells that had fewer than 10 or 15 genes detected and cells that had abnormally high numbers of mRNA detected. For ex-

periments done usingMGH66, we identified three genes that showed consistently high-level expression in themajority of cells and in

various conditions: WP-004174069.1, WP-004174069.1-2, andWP-002920103.1. We use these three genes as internal controls and

removed cells with a normalized expression of any of these three genes that is less than 50. The standard Seurat workflow prior to

clustering was used including global normalization, feature selection, and scaling of gene expression. We used the top 2000 highly

variable genes as input features for clustering analysis and downstream annotation. The Seurat packages FindNeighbors and

FindClusters were used for clustering at a resolution of 0.5. Uniform manifold approximation and projection (UMAP) was utilized

for visualization of clustering. For marker identification and annotation of clusters, Seurat’s FindMarkers tool was usedwith a require-

ment that the markers were expressed in 25% of the cells present in the dataset. For some rare population detection, the 25%

criterion was removed. From the FindMarkers results, we consider genes with log2 fold changes that are greater than 2, and adjusted

p-value less than 0.05 as significantly differentiated genes. If a cluster did not contain any genes that pass this threshold, we did not

consider this as a significant cluster.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for BacDrop experiments and bulk RNA-seq experiments were performed in R (v.3.2.2) and detailed analysis was

described in relevant results and method sections. For all other experiments, including RT-qPCR, RNA-FISH, FACS, the quantifica-

tion of mutation frequencies, and persister assays, the statistical analyses were performed in Prism 9 (version 9.3.1). Statistical

details, including numbers of samples, types of statistical analyses, and precisionmeasure can be found in figure legends and results

sections. No methods were used to determine whether the data met assumptions of the statistical approach.
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Figure S1. Development and performance of BacDrop, related to Figure 2 and STAR Methods

(A) rRNA and gDNA depletion are implemented in BacDrop. The three peaks are 16S rRNA (�1,000 bp), 23 rRNA (�2,000 bp), and gDNA (>4,000 bp).

(B) RNA species and their percentage in a BacDrop library of K. pneumoniae.

(C–F) Validation of BacDrop in K. pneumoniae, P. aeruginosa, E. coli, and E. faecium. (C) Unsupervised cell clustering separates these four species into distinct

clusters. (D) rRNA-depletion efficiency in these four species. (E and F) Cell loses in the mixed-species experiment are due to different cell recovery rates from

centrifugation steps. Experiments in (D) and (E) were repeated 3 times. Error bars are plotted as standard deviation.

(G–I) Assessment of the transcriptome coverage of BacDrop libraries, see method details.
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Figure S2. Analysis of MGH66 experiment including the antibiotic-treated samples and untreated samples, related to Figure 3

(A) UMAP plotted based on the original identity of these 8 samples. Cells were separated well based on their treatment.

(B) Unsupervised UMAP showed three clusters with significantly (p < 0.05) higher expression of genes in the SOS-response pathway, heat-shock response, and

genes encoding an IS903B transposase (MGE).

(C) No strong batch effect was observed between the two biological replicates with the same treatment conditions.

ll
Article



Figure S3. Analysis of the untreated MGH66 samples, related to Figure 4

(A) UMAP plotted based on the original identity of these two samples (replicate 1 and replicate 2).

(B) Cells sorted from MGE.high and MGE.low had similar survival rates (p = 0.95).

This experiment was run in triplicates and error bars were plotted as standard deviation. The Student’s t test was used for statistical analysis (p = 0.95).
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Figure S4. A large number of cells is beneficial for the detection of small population, related to Figure 4 and STAR Methods
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Figure S5. Analysis of the antibiotic-treated samples, related to Figures 3 and 5 and STAR Methods

(A) Killing kinetics of MGH66 treated with meropenem (green), ciprofloxacin (blue) and gentamicin (purple). The cells were collected at 30min under the treatment

(red arrow) for BacDrop experiments. The experiment was repeated 3 times and the error bars are plotted as standard deviation.

(B–D) Analysis of the antibiotic-treated samples based on the replicates. UMAP plotted based on the original identity of two replicates (replicate 1 and replicate 2).

(B) Meropenem, (C) ciprofloxacin, (D) gentamicin. For the meropenem-treated samples, fractions of cells in identified clusters were calculated separately from

two replicates and indicated in the parentheses.
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Figure S6. Validate the expression of cspD in MGH66: PcspD:gfp strain using FACS sorting coupled with live/dead staining, related Figure 6

and STAR Methods

(A) Gating for cells to exclude cell debris.

(B and C) Dead cells were detected using mCherry red fluorescence, and GFP fluorescence of all cells was detected using green fluorescence. Roughly�15.2%

of cells are dead in the gated population. The gating of GFP-low and GFP-high population is shown.

(D) 106 live cells from the GFP-high and GFP-low subpopulations were sorted into 1 mL LB medium, and immediate plated 100 mL on LB agar plates without any

antibiotics.

This experiment was run in triplicates and error bars were plotted as standard deviation. The Student’s t test was used for statistical analysis (p = 0.43).
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