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ABSTRACT Current growth-based antibiotic susceptibility testing (AST) is too slow
to guide early therapy. We previously developed a diagnostic approach that
quantifies antibiotic-induced transcriptional signatures to distinguish susceptible
from resistant isolates, providing phenotypic AST 24 to 36 h faster than current
methods. Here, we show that 10 transcripts optimized for AST of one fluoroquino-
lone, aminoglycoside, or beta-lactam reflect susceptibility when the organism is
exposed to other members of that class. This finding will streamline development
and implementation of this strategy, facilitating efficient antibiotic deployment.
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Worldwide, more than 700,000 people die annually from antibiotic-resistant infec-
tions (1), and gaps in global antibiotic resistance tracking suggest that this burden

is severely underestimated (2, 3). Antibiotic-resistant infections lead to higher medical
costs, longer hospital stays, and increased mortality (4, 5). Current growth-based
antibiotic susceptibility testing (AST) is too slow to guide therapy in real time (6–8).
This diagnostic delay causes overreliance on empiric broad-spectrum antimicrobials,
contributing to the emergence of resistance and poor patient outcomes (9, 10).

Antibiotic-induced transcriptional signatures predict susceptibility.We recently
developed a novel microbial diagnostic assay called GoPhAST-R (combined genotypic
and phenotypic AST through RNA detection) that can provide AST in ,4 h directly
from a positive blood culture bottle, 24 to 36 h faster than standard growth-based
methods (11). GoPhAST-R measures specific antibiotic-responsive mRNA expression
signatures using a commercially available hybridization-based RNA detection platform,
NanoString, which is quantitative and multiplexed and works directly from crude lysate
with minimal hands-on time (11, 12). After brief antibiotic exposure at the clinical
breakpoint concentration, susceptible cells become stressed and exhibit rapid tran-
scriptional changes that distinguish them from unharmed resistant cells. By targeting
markers of susceptibility, GoPhAST-R allows accurate and robust phenotypic AST classi-
fication, agnostic to resistance mechanism. In addition to detecting these antibiotic-
induced transcripts for phenotypic AST, GoPhAST-R can simultaneously target known
genetic resistance markers to improve accuracy of resistance detection (13) and
facilitate molecular epidemiology by tracking the emergence and spread of specific
resistance mechanisms (14), with no need for additional testing. This simultaneous
integration of genotype and phenotype sets GoPhAST-R apart from purely phenotypic
rapid systems, either commercially available (15) or under development (16), that pro-
vide growth-based AST within,7 h from positive blood culture bottles.

We previously demonstrated GoPhAST-R for three antibiotics representing different
classes, across five pathogens. We first performed transcriptome sequencing (RNA-Seq)
to identify candidate genes whose antibiotic-induced expression best distinguishes
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susceptible from resistant isolates and then refined these candidate transcripts on the
NanoString assay platform, using machine-learning algorithms to select the top 10 an-
tibiotic-responsive genes, and validated their AST prediction accuracy for each patho-
gen-antibiotic pair (11). We further validated the simultaneous detection of selected
genotypic carbapenem resistance determinants (11).

To enhance flexibility of development and implementation of this diagnostic
approach, we aimed here to test the generalizability of these transcriptional signatures
of susceptibility across an antibiotic class. Since antibiotics elicit transcriptional
responses related to their mechanism of action (17–20), we hypothesized that antibi-
otic-responsive genes optimized for one antibiotic could reflect susceptibility when an
isolate is exposed to other members of the same drug class. Here, we confirm this hy-
pothesis for two common pathogens with a propensity for multidrug resistance—
Escherichia coli and Klebsiella pneumoniae—treated with multiple members of three
major antibiotic classes in regular clinical use: fluoroquinolones, aminoglycosides, and
beta-lactams.

Experimental design. We used NanoString probe sets targeting the top 10 genes
we previously identified (11) for each of three individual antibiotics—ciprofloxacin (a
fluoroquinolone [FQ]), gentamicin (an aminoglycoside [AG]), and meropenem (a beta-
lactam [BL] in the carbapenem subclass)—and assessed whether they reflect suscepti-
bility when exposed to other members of their respective class (Table 1). All strains
were obtained from clinical or reference microbiological laboratories, representing
diverse geographic locations and resistance mechanisms when possible, and all MICs
were verified by broth microdilution (6) (see Data Set S1 in the supplemental material).
For the FQ and AG classes, strains were grown in Mueller-Hinton broth (MHB) and
treated at early log phase (optical density at 600 nm [OD600], ;0.2). For BLs, we previ-
ously found that strains with prominent inoculum effects (21–23) may exhibit
decreased induction of transcriptional susceptibility signatures at high cell density (11).
To account for this effect for the BL class, we treated isolates at the Clinical and
Laboratory Standards Institute (CLSI)-recommended MIC inoculum range of 2� 105 to
8� 105 CFU ml21 by growing them in MHB to early log phase, back-diluting to 2� 105

CFU ml21 in fresh MHB, and incubating for 60 min prior to treatment.
After brief antibiotic exposure (60 min for FQs and AGs, 120 min for BLs) at their re-

spective clinical susceptibility breakpoint concentrations (6, 11, 24), or an equivalent
control incubation without antibiotics, samples were mechanically lysed and used as
input for NanoString assays as previously described (11). Using the NanoString plat-
form (12), we quantified expression of the top 10 responsive and 10 control genes we
previously identified for individual pathogen-antibiotic pairs in multiplexed fashion
(11). Control genes, whose expression is unaffected by antibiotics, were used to scale

TABLE 1 Classification of antibiotics used in this study with respective treatment conditions

Antibiotic Class Subclass

Antibiotic treatment

Concna (mg/liter) Duration (min)
Ciprofloxacin FQ 2nd-generation FQ 0.25 60
Levofloxacin FQ 3rd-generation FQ 0.5 60
Moxifloxacin FQ 3rd-generation FQ 0.25 60
Gentamicin AG 4 60
Tobramycin AG 4 60
Amikacin AG 16 60
Ampicillin BL Aminopenicillin 8 120
Cefazolin BL 1st-generation cephalosporin 2 120
Ceftriaxone BL 3rd-generation cephalosporin 1 120
Aztreonam BL Monobactam 4 120
Piperacillin-tazobactam BL Ureidopenicillin/beta-lactamase inhibitor 16/4 120
Ertapenem BL Carbapenem 0.5 120
Meropenem BL Carbapenem 1 120
aThe concentration for antibiotic treatment was chosen as the clinical susceptibility breakpoint established by the CLSI for all antibiotics whenever available (24) or as the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint for moxifloxacin (29).
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for cell number at lysis, resulting in a normalized fold induction of each responsive
gene in antibiotic-treated versus untreated samples for each strain, calculated as previ-
ously described (11). To assess assay performance, these normalized fold inductions
were compared with the known AST classification of each isolate. For all analyses, we
used the code we previously wrote and executed, as described elsewhere (11). Code
and NanoString raw data files can be made available upon request.

To further characterize the isolates used in this study, we also sequenced those not
previously deposited in the NCBI Sequence Read Archive (SRA). Genomic DNA was
extracted using a Qiagen DNeasy blood and tissue kit, prepared using an Illumina
Nextera XT DNA library prep kit, sequenced on an Illumina MiSeq (or NextSeq, for strain
16) platform, and analyzed for known resistance determinants using ResFinder (25)
(Data Set S1).

Generalizability of 10-transcript signatures across FQs and AGs. We tested the
ciprofloxacin 10-transcript signatures across the FQs ciprofloxacin, levofloxacin, and
moxifloxacin and the gentamicin 10-transcript signatures across the AGs gentamicin,
tobramycin, and amikacin. For each class, we selected six isolates of each species: three
susceptible and three resistant to all class members (Data Set S1). For both species,
heat maps illustrate that the top 10 genes identified for AST of ciprofloxacin and genta-
micin showed similar normalized fold induction upon treatment with three FQs and
three AGs, respectively (Fig. 1a and b). One-dimensional projections summarizing these
transcriptional data (11, 26) show robust distinction of susceptible and resistant iso-
lates across each class (Fig. S1a and b).

Generalizability of a 10-transcript signature across BLs. We next tested BLs, a
large class of diverse compounds comprising multiple subclasses that span a wide
spectrum of antibacterial activity. The diversity of the BLs challenges the generalizabil-
ity of transcriptional signatures of susceptibility within a drug class and offers the most
clinical benefit from rapid and efficient antibiotic deployment if successful. We tested
the 10-transcript signatures identified for meropenem across treatments of seven BL
antibiotics spanning multiple subclasses and ranging in spectrum of activity: ampicillin,
cefazolin, ceftriaxone, aztreonam, piperacillin-tazobactam, ertapenem, and merope-
nem. We selected eight clinical isolates for each species that vary in susceptibility
across the different BLs, from pan-susceptible to pan-resistant (Data Set S1). Note that
although K. pneumoniae is intrinsically resistant to ampicillin, strain 23 has an MIC that
falls in the susceptible range; whole-genome sequencing (WGS) revealed a premature
stop codon (E88*) in the chromosomal blaSHV-89 that may explain this unusual pheno-
type. Normalized fold induction of the meropenem-responsive genes tested across the
seven BLs is shown as heat maps (Fig. 1c) and summarized as one-dimensional projec-
tions (Fig. S1c). In both species, each BL induced the top 10 meropenem-responsive
transcripts in only the susceptible isolates, allowing susceptibility distinction despite
variability in expression levels of certain genes across the class. Strains with MICs closer
to the breakpoint exhibited partial induction, consistent with our previous finding that
the magnitude of transcriptional response to antibiotic exposure at the breakpoint
correlates with MIC (11). Specific carbapenemases from our panel of common carbape-
nemases and extended-spectrum beta-lactamases were found in the same assay,
explaining resistance phenotypes in most carbapenem-resistant isolates (Fig. S2).
Notably, strain 14 is correctly distinguishable from susceptible isolates upon ertape-
nem exposure, despite lacking genotypic markers from our panel. WGS of this isolate
revealed three beta-lactamases, including blaCMY-2 (27, 28), as well as polymorphisms in
the OmpC and OmpF porins (Data Set S1), suggesting a possible atypical basis for
ertapenem resistance that would have been difficult to predict by genotype alone.
This exemplifies GoPhAST-R’s ability to determine phenotypic resistance to each antibi-
otic, independent of resistance mechanism.

GoPhAST-R as a robust diagnostic platform. This work demonstrates that the
same antibiotic-induced 10-transcript signatures reflect antibiotic susceptibility for all
drugs within a class, consistent with a conserved core transcriptional response to each
of three major antibiotic classes. Despite their diversity, even BL compounds share a
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susceptibility signature across all subclasses, implying a common stress response to
their similar cellular targets. The 10-transcript signatures used in this study, previously
designed for individual antibiotics, may not represent the top 10 genes for the whole
class or for each individual member, but they clearly report on susceptibility for each
compound in a given class. Moreover, WGS of isolates used in this study revealed
diverse genotypic resistance mechanisms (target site mutations, efflux pumps, porin
mutations, or antibiotic-modifying enzymes [see Data Set S1]), further illustrating how
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FIG 1 Differential expression of the same antibiotic-induced 10-transcript signatures reflect susceptibility for all drugs within a class. The figure shows heat
maps of normalized, log-transformed fold induction (treated/untreated) of the top 10 antibiotic-responsive transcripts we previously identified for E. coli
(top panels) and K. pneumoniae (bottom panels) treated with (a) ciprofloxacin, (b) gentamicin, and (c) meropenem upon exposure at CLSI breakpoint
concentrations to other fluoroquinolones, aminoglycosides, and beta-lactams, respectively. Color scales indicate range of log2(fold induction) for transcripts
in the respective heat map(s), symmetrically scaled to each plot. Strains are indicated by numbers over the heat map columns (Data Set S1), with CLSI
classifications of each strain based on broth microdilution shown below (S, susceptible; I, intermediate; R, resistant). Gene identifiers for antibiotic-
responsive transcripts are listed on the left, as defined for NCBI reference sequences NC_000913 (E. coli; top panels) and NC_009648 (K. pneumoniae;
bottom panels).
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our phenotypic AST approach is fundamentally agnostic to resistance mechanism.
Thus, this study provides further evidence for transcriptional profiling as a robust phe-
notypic measure of antimicrobial stress, underscoring the flexibility and breadth of
GoPhAST-R: the same minimal gene set derived for one specific antibiotic can assess
susceptibility not only across diverse strains but also across drugs with a shared mech-
anism of action. This finding will streamline GoPhAST-R implementation, contributing
to the critical effort to employ rapid AST diagnostics to guide upfront selection of the
narrowest effective agent against a given pathogen. Efficient, informed deployment of
antibiotics will improve patient outcomes while minimizing selection for resistance.

Data availability. Raw sequencing files of strains not previously deposited in the
NCBI Sequence Read Archive (SRA) were deposited in the SRA under project no.
PRJNA707347.

SUPPLEMENTAL MATERIAL
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