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usually just before PCR amplification, thereby limiting the cost 
and time saved by multiplexing16,17.

Here we report RNAtag-Seq, a method for generating a single 
RNA-seq library containing large numbers of RNA samples that 
are barcoded and pooled before library construction (Online 
Methods, Fig. 1 and Supplementary Protocol). Barcoding in 
RNAtag-Seq is achieved through direct ligation of adaptors to 
RNA, enabling strand-specific, quantitative sequencing of full-
length transcripts in diverse prokaryotic and eukaryotic species at 
a quality highly comparable to that of the well-established dUTP 
method7 for single-sample library construction (Supplementary 
Figs. 1 and 2 and Supplementary Table 1).

To enable pooled library construction of large numbers of 
samples by RNAtag-Seq, we empirically identified sets of bar-
coded adaptors that provide uniform read counts across many 
samples. First, we designed 96 random barcoded adaptors (see 
Online Methods) and tagged a single Escherichia coli RNA sample 
with each barcode. We identified a set of 32 barcoded adaptors 
that, when individually ligated to replicate samples before pooled 
library construction, produced uniform read counts across these 
samples (less than threefold variation; Supplementary Fig. 3a 
and Supplementary Table 2). This variation is sequence intrin-
sic as independent synthesis of these barcodes produced similar 
read distributions (Supplementary Table 2). To define sets of 
barcodes of arbitrary size that provide similarly uniform read 
counts, we synthesized a pool of RNA adaptors that contained 
a degenerate 6-nt barcode (N6) (Online Methods), ligated this 
pool to mouse RNA, quantified the number of reads obtained for 
each barcode, and identified several large cohorts of barcodes that  
(i) yielded uniform read counts and (ii) were divergent enough to 
allow for correct sample assignment even in the case of sequenc-
ing errors (Supplementary Table 2 and Online Methods). We 
selected one cohort of 54 barcodes and individually synthesized 
and ligated them to mouse RNA. This was followed by pooling, 
library construction and sequencing. The resulting distribution 
of reads per barcode was highly uniform (less than twofold vari-
ation; Supplementary Fig. 3b), demonstrating that this approach 
enables the identification of large sets of barcoded adaptors that 
perform well in pooled generation of RNA-seq libraries.

Notably, normalized gene expression values were highly cor-
related among replicate samples barcoded with different adaptors 
(Supplementary Figs. 4 and 5a and Supplementary Table 3). 
In addition, the frequencies of dinucleotide pairs following the 
adaptor sequence closely mirrored those present in all annotated 
genes (Supplementary Fig. 5b), highlighting that the sequence of 
RNA fragments did not markedly affect their ligation frequency.  
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Although RNA-seq is a powerful tool, the considerable time 
and cost associated with library construction has limited its 
utilization for various applications. RNAtag-Seq, an approach to 
generate multiple RNA-seq libraries in a single reaction, lowers 
time and cost per sample, and it produces data on prokaryotic 
and eukaryotic samples that are comparable to those generated 
by traditional strand-specific RNA-seq approaches.

RNA-seq has become the gold standard for mapping transcrip-
tomes1,2, profiling changes in splicing3,4 and measuring gene 
expression levels5,6. The most widely used method for RNA-seq  
library construction is the dUTP approach7. Although this 
approach provides high-quality strand-specific RNA-seq profiles, 
it involves generation of a single library for a single sample7. As 
such, this method is time consuming and expensive to perform 
on many samples, limiting its utility for applications that require 
profiling hundreds or thousands of individual samples, such as 
whole-transcriptome profiling of cancer samples8,9 or screening 
the effects of genetic perturbations on gene expression10–12.

One approach to increase the throughput of library con-
struction is to attach a unique barcode to individual samples 
and pool these samples to generate a single RNA-seq library. 
The advantage of this approach is that the cost and time for 
library generation per sample is reduced as the total number of 
samples increases. Recently, several protocols have been devel-
oped to generate cDNA libraries from pools of barcoded RNA 
samples13–17. Although these protocols represent an important  
conceptual advance, they are currently limited because either 
they introduce barcodes through an oligo(dT) primer and there-
fore can only profile the 3′ ends of eukaryotic mRNAs13–15 or 
they introduce barcodes at later stages of library construction, 
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Together, these data demonstrate that ligation of different 
barcoded adaptors does not introduce quantification biases. 
Although the total number of reads across barcodes varied by as 
much as threefold, this variation does not affect gene quantifica-
tion or differential expression analysis because these measures 
normalize gene values by the total number of reads generated 
for a sample18.

To demonstrate the utility of RNAtag-Seq for identifying  
differential gene expression in mammalian samples, we profiled 
the transcriptomes of 11 different tissues and three developmen-
tal stages in the mouse (Supplementary Table 4). In total, we 
identified >4,500 differentially expressed genes across all samples  
(fold change >2, adjusted P value (Padj) < 0.01). Notably, the  
differentially expressed genes that were detected recapitulated  
the known gene expression differences that mark these different 
tissue samples (Fig. 2a). For example, 649 genes whose expression 
was significantly different in the brain and spinal cord compared  
to the remainder of the samples (fold change >2, Padj < 0.01)  
were highly enriched for various neural functions including  
generation of neurons (Padj < 0.01), regulation of synaptic trans-
mission (Padj < 0.001) and ion transport (Padj < 0.001) (Fig. 2b and 
Supplementary Table 5). Similarly, we identified 150 genes that 
were differentially expressed between the eye and all remaining 
samples. These genes were highly enriched for visual perception 
(Padj < 10−60), sensory perception of light (Padj < 10−60), photo
receptor cell development (Padj < 10−15) and eye development  
(Padj < 10−15) (Fig. 2b). These results highlight that RNAtag-Seq is 
able to pick out the well-characterized differences in gene expres-
sion across multiple samples in mammalian specimens.

We also profiled and compared the transcriptomes of multiple 
individual bacterial samples processed in a single pool. Recent 

work has shown that transcriptional responses to antibiotic 
exposure can be used to distinguish drug-susceptible and drug-
resistant bacteria in clinical samples19. However, such signatures 
have been determined for few clinically relevant pathogens, 
owing in part to the large number of individual samples needed 
for these analyses. To determine a transcriptional signature for 
ciprofloxacin susceptibility in E. coli, we profiled samples from 
ciprofloxacin-susceptible (CipS) and ciprofloxacin-resistant 
(CipR) clinical isolates, two of each exposed to ciprofloxacin and 
two of each not, at four time points of growth (Supplementary 
Table 6). A total of 665 and 334 genes were significantly up- 
and downregulated, respectively (fold change > 3, Padj < 0.05), 
after drug exposure of CipS strains (Fig. 2c and Supplementary  
Table 7), including all 20 genes in the well-characterized SOS 
pathway induced by DNA-damaging agents such as fluoro
quinolones20 (Fig. 2c and Supplementary Fig. 6). Sixty-seven 
genes were differentially expressed in only CipS strains and at all 

time points following ciprofloxacin expo-
sure (Fig. 2c and Supplementary Fig. 6), 
suggesting their expression provides a  
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Figure 2 | Differential gene expression  
analysis using RNAtag-Seq. (a) Heat map of 
all 3,875 differentially expressed genes (fold 
change >2, Padj < 0.01 with Padj corresponding 
to the P value adjusted for multiple testing 
using the Benjamini-Hochberg procedure) 
across adult mouse tissues and mouse embryos 
at developmental stages E11 and E15.  
(b) Selected Gene Ontology categories and their 
enrichment for specific tissues: brain and spinal 
cord samples (top) and eye samples (bottom) 
relative to all samples. The enrichment is 
plotted as the −log10 of the enrichment P value. 
(c) MA plots of 2 ciprofloxacin-susceptible 
(CipS, left) and 2 ciprofloxacin-resistant  
(CipR, right) E. coli clinical isolates 30 min  
after exposure to ciprofloxacin versus untreated. 
Genes found to be significantly up- and 
downregulated (greater than threefold,  
Padj < 0.05) by RNAtag-Seq are colored black. 
Genes in the SOS regulon are colored red.
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specific and stable transcriptional signature for identifying  
ciprofloxacin susceptible E. coli strains. Taken together, our find-
ings demonstrate that RNAtag-Seq is a robust method for iden-
tifying differentially expressed genes across numerous libraries 
generated in a single pool in both eukaryotes and bacteria.

Because many samples can be pooled before library construc-
tion, RNAtag-Seq requires lower input RNA amounts per sam-
ple than existing protocols. Furthermore, as this method does 
not require poly(A) capture or enrichment, RNAtag-Seq can 
also accommodate highly fragmented RNA samples and can be 
used to profile all transcripts, including short and long as well as  
coding and noncoding RNAs, in both prokaryotic and eukaryo-
tic samples. RNAtag-Seq can therefore be implemented in a 
wide variety of biological systems and for diverse applications of  
RNA-seq such as gene expression profiling in large-scale genetic 
and chemical screens; human population genetics studies; 
archived formalin-fixed, paraffin-embedded samples; protein-
RNA interaction mapping; small RNA-seq; and simultaneous 
profiling of pathogen and host transcription during infection.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. NCBI Sequence Read Archive: SRP051252.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Culture growth and RNA isolation. Bacterial total RNA was  
isolated for mid-exponential LB cultures of Prochlorococcus  
marinus pastoris CCMP1986 (31% G+C), E. coli K-12 MG1655 
(50% G+C) and Rhodobacter sphaeroides 2 4 1 uid57653 (67% G+C)  
as previously described21. In comparisons of RNAtag-Seq and 
dUTP, equal amounts of total RNA from these three organisms 
were mixed before library construction. Ciprofloxacin-susceptible  
and ciprofloxacin-resistant E. coli strains were provided by 
Brigham and Women’s Hospital under permission from the 
Institutional Review Board of Partners Health Care, Protocol 
#2012P001062. In profiling transcriptional responses of E. coli  
to ciprofloxacin, cultures were grown to early log phase in 
Mueller-Hinton broth and treated with 2.5 mg/L of ciprofloxacin. 
At the indicated time points, ~5 × 108 cells were harvested by 
centrifugation, and total RNA was extracted using the Direct-
Zol RNA Miniprep protocol (Zymo Research). Mouse tissue for 
differential expression analyses and K562 RNAs were purchased 
from Clontech (#636644, Mouse Total RNA Master Panel) and  
Ambion, respectively.

Generation and sequencing of cDNA libraries. K562 dUTP 
libraries were generated as described with rRNA depleted using the 
RNaseH approach22. Bacterial dUTP libraries were generated as 
described21 with rRNA depleted using with RiboZero (Epicentre). 
In all RiboZero reactions, the maximal amount recommended by 
the manufacturer per reaction was used to avoid an additional 
quantification step during library construction and ensure the 
RNA did not exceed the capacity of the solution. RNAtag-Seq 
cDNA libraries were generated according to the detailed pro-
tocol in the Supplementary Protocol. Briefly, 200–400 ng  
of total RNA was fragmented, depleted of genomic DNA and 
dephosphorylated before its ligation to barcoded adaptors with 
a 5′ phosphate and a 3′ blocking group. DNA adaptors carried 
5′-AN8-3′ barcodes and RNA adaptors 5′-rArN6-3′ barcodes. 
Sequences of these barcodes are provided in the Supplementary 
Protocol and Supplementary Table 2. Barcoded RNAs were 
pooled and depleted of rRNA using the appropriate RiboZero 
rRNA depletion kit (Epicentre) for bacterial and K562 pools  
(8 samples per pool, Supplementary Table 2) and as previously 
described23 for mouse pools. These pools of barcoded RNAs 
were converted to Illumina cDNA libraries in three key steps: 
(i) reverse transcription of the RNA using a primer designed to 
the constant region of the barcoded adaptor; (ii) degradation of 
the RNA and ligation of a second adaptor to the single-stranded 
cDNA; (iii) PCR amplification using primers that target the  
constant regions of the 3′ and 5′ ligated adaptors and contain the 
full sequence of the Illumina sequencing adaptors (Fig. 1). Two 
SPRI cleanup steps are included following adaptor ligations to 
ensure efficient removal of adaptor dimers (<1% of our sequenc-
ing reads represented adaptor dimers). Modifications of the 
RNAtag-Seq protocol used in generation of mouse libraries are 
detailed in Appendix A in the Supplementary Protocol. cDNA 
libraries were sequenced on Illumina MiSeq or HiSeq2500

RNA-seq data analysis. For the analysis of RNAtag-Seq data, 
reads from each sample in the pool were identified on the basis 
of their associated barcode using in-house scripts. Up to one mis-
match in the barcode was allowed with the caveat that it did not 

enable assignment to more than one barcode. Barcode sequences 
were removed from reads before alignment. Analysis of bacte-
rial data was conducted as previously described22,24. Briefly, 
reads were aligned to the appropriate RefSeq reference genomes 
using BWA25. Gene annotations were obtained from RefSeq and 
Rfam26. The overall fragment coverage of genomic regions cor-
responding to features such as ORFs and rRNAs was conducted 
using an in-house pipeline as described22,24. To account for dif-
ferences in the efficiency of rRNA depletion, we calculated nor-
malized abundance per gene from the number of fragments per 
kilobase of that gene per million fragments aligned to all ORFs  
(FPKMO: fragments per kilobase of ORF per million fragments 
aligned to all ORFs). Sequencing reads from E. coli clinical iso-
lates were aligned to the E. coli HS reference sequence (RefSeq 
accession NC_009800). SOS-responsive genes in E. coli HS were 
identified on the basis of their homologs in the SOS regulon of 
E. coli K-12 (ref. 27).

Analyses of K562 data were performed using the computational 
pipeline developed in Adiconis et al.22. Briefly, to calculate the 
number of read pairs per gene, we aligned reads to the human 
genome version 19 using Bowtie 0.12.7 (ref. 28) and calculated 
reads per gene using scripts based on the BamTools API29. 
Normalized read counts per gene were calculated using the RSEM 
package version 1.1.17 (ref. 30).

In the analysis of mouse tissue data, Bowtie 2 (ref. 31) was used 
to remove reads aligning to rRNA, and the remaining reads were 
aligned by RSEM30 to a mouse transcript reference files generated 
using UCSC annotations. RSEM was then used to calculate total 
and normalized reads per gene and genes that to which fewer than 
ten total reads aligned were eliminated from further analysis.

Custom software used to process and analyze RNA-Seq data 
software is not being made available as part of this publication.

Identifying a set of 32 DNA adaptors that work well together. 
To design a set of random barcoded DNA adaptors, we enumer-
ated all possible 8-nt barcodes and then selected a random set of 
96 barcodes that contained at least 3-nt distances with all other 
sequences in the selected set. This distance would allow us to 
assign a read even if with two sequencing errors within the 8-nt  
barcode. We then synthesized these 96 DNA adaptor with a  
5′ adenosine followed by the barcode sequence. We ligated each of 
the barcodes to the same total RNA and measured the uniformity  
of coverage. We identified 32 adaptors that showed the lowest 
across-barcode variation (less than threefold).

A pooled strategy to identify large cohorts of adaptors that 
work well together. To identify a cohort of RNA adaptors that 
work well together, we synthesized an RNA adaptor containing 
a 5′ adenosine followed by a degenerate 6-nt barcode (N6) that 
should contain large complexity of all possible 6-nt barcodes. 
We ligated these N6 adaptors to poly(A)-selected mouse ES cell 
RNA and generated a library. We then sequenced this library 
and measured the total number of reads present for each indi-
vidual N6 sequence. To account for differences in the number of 
reads due to differences in the relative abundance of the adaptor 
rather than its ligation efficiency, we sequenced the adaptor pool 
directly. We computed an enrichment score that is defined as 
the coverage of the RNA samples that contain a given barcode 
divided by the number of reads present for each barcode alone.  
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Using this normalized score, we identified several cohorts 
of sequences that contained uniform coverage within the set  
(less than twofold variation) and a minimum nucleotide distance 
of 2 to allow for sequencing error correction. We chose a small 
cohort that contained 54 barcodes and synthesized these indi-
vidually to generate a panel of barcodes.

Comparison of RNAtag-Seq and dUTP. To calculate coverage 
across K562 transcripts, we aligned reads using Bowtie 0.12.7 
(ref. 28) to the human transcriptome obtained from the UCSC 
Genome Browser and calculated the distribution of reads along 
the length of these transcripts as described22. Coverage across 
bacterial ORFs was calculated using in-house scripts based on the 
alignment of reads to the genome. The calculation of the number 
of genes detected as a function of reads sequenced was conducted 
using code available in the Scotty package32.

Quantification of dinucleotide frequencies. Dinucleotide fre-
quencies were calculated for the first two bases of reads aligning 
to E. coli from RNA-seq data generated from mixed P. marinus, 
E. coli and. R sphaeroides RNA. For read 1 in RNAtag-Seq data, 
sequences of barcodes plus the universal 3′ nucleotide were 
removed before alignment. Dinucleotide frequencies for all  
E. coli ORFs were generated using sliding two-base windows across 
the entire lengths of RefSeq-annotated protein-encoding genes.

Identification of differentially expressed genes. For differential  
expression analysis of E. coli, DESeq18 was used to compare 
total reads per ORF between relevant time points or conditions.  

At each time point and condition, the two antibiotic-resistant strains 
were treated as biological replicates as were the two antibiotic- 
susceptible strains. For differential expression analysis of mouse 
tissues, DESeq2 (ref. 33) was used to compare RSEM expected 
count values per gene. In both DESeq and DESeq2 analyses, 
adjusted P values (Padj) were used as cutoffs for statistical sig-
nificance. Because RNA level patterns of some of the cell types 
analyzed are very similar, we compared all possible combinations 
of one cell type, two cell types and three cell types versus all other 
cell types and joined all genes sets with more than 40 genes in each 
comparison to generate the heat map in Figure 2a. Assignment 
and analysis of mouse Gene Ontology groups was conducted in 
R using the DAVID web service34.
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